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Abstract
The identification of boosted objects in high-energy particle physics relies on precise
jet substructure reconstruction. In ATLAS, a splitting algorithm divides overly large
topological clusters (topo-clusters) at local energy maxima to preserve substructure
information, but its impact on physics performance has not been systematically studied.
This thesis presents a comprehensive investigation of topo-cluster splitting using Monte-
Carlo simulations of top and 𝑊/𝑍 jets alongside QCD dijet backgrounds. Specialized
methodologies are developed, including an approach for comparing clusters before and
after splitting as well as an algorithm for matching truth constituents to reconstructed
clusters.
The analysis demonstrates that splitting is essential for jet substructure reconstruction.
Without it, the discriminating power of variables like 𝜏21 and 𝜏32 is severely degraded.
Comparing the extreme configurations – disabling splitting entirely versus the default
settings – reveals that only a small fraction of jets is reconstructed better without
splitting. A parameter grid scan indicates that while the choice of splitting parameters has
measurable effects, more substantial changes to the algorithm are required for meaningful
performance improvements.

Kurzfassung
Die Identifikation von geboosteten Objekten in der Hochenergie-Teilchenphysik beruht
auf einer präzisen Rekonstruktion der Jet-Substruktur. In ATLAS werden übergroße
topologische Cluster (Topo-Cluster) an lokalen Energiemaxima durch einen Splitting-
Algorithmus geteilt, damit Informationen über die Substruktur erhalten bleiben; der
Einfluss dieses Verfahrens auf die Rekonstruktionsqualität wurde bislang jedoch nicht
systematisch untersucht. In dieser Arbeit wird eine umfassende Untersuchung des Topo-
Cluster-Splittings präsentiert, die auf Monte-Carlo-Simulationen von top- und 𝑊/𝑍-Jets
sowie QCD-Dijet-Hintergründen basiert. Spezialisierte Methoden werden entwickelt,
darunter ein Ansatz zum Vergleich von Clustern vor und nach dem Splitting sowie ein
Algorithmus zur Zuordnung von Truth-Konstituenten zu rekonstruierten Clustern.
Es wird gezeigt, dass Splitting für die Rekonstruktion der Jet-Substruktur essenziell ist.
Ohne Splitting wird die Trennleistung von Variablen wie 𝜏21 und 𝜏32 stark vermindert.
Der Vergleich extremer Konfigurationen – vollständige Deaktivierung des Splittings
gegenüber den Standardeinstellungen – zeigt, dass nur ein kleiner Bruchteil der Jets ohne
Splitting besser rekonstruiert wird. Eine Rastersuche im Parameterraum ergibt, dass die
Wahl der Splitting-Parameter zwar messbare Effekte hat, jedoch weitergehende Ände-
rungen am Algorithmus erforderlich sind, um eine substanzielle Leistungsverbesserung zu
erzielen.
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Ist es Ein lebendig Wesen,
Das sich in sich selbst getrennt?

Sind es zwei, die sich erlesen,
Daß man sie als Eines kennt?

— Johann Wolfgang von Goethe

just one more collider bro. i promise bro just one more collider and we’ll find all the
particles bro. it’s just a bigger collider bro. please just one more. one more collider and
we’ll figure out dark matter bro. bro cmon just give me 22 billion dollars and we’ll solve

physics i promise bro. bro bro please we just need to build one more collider t—
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1 Introduction
The search for physics beyond the Standard Model at the Large Hadron Collider [2]
depends critically on the precise reconstruction and identification of high-energy objects
produced in proton-proton collisions. Among these objects, jets – collimated sprays of
particles originating from energetic quarks and gluons – play a central role in nearly every
physics analysis. When massive particles such as 𝑊  and 𝑍 bosons or top quarks are
produced at high transverse momentum, their decay products are boosted and collimated,
forming what is known as a boosted jet. Its internal structure contains information
that is crucial for distinguishing signal processes from background, and purpose-built
substructure variables are therefore essential tools for analyses [3–5].

Jet reconstruction in the ATLAS collaboration [6] typically includes the formation of
topological clusters (topo-clusters) from calorimeter cell signals [7]. These topo-clusters
serve as the fundamental input objects for jet reconstruction algorithms. However, the
standard topo-clustering algorithm can create overly large clusters that obscure the fine-
grained substructure information needed for effective particle identification. To mitigate
this issue, a splitting algorithm is applied to identify local energy maxima within large
clusters and divide them into smaller, more targeted clusters.

Despite the importance of the splitting algorithm for jet reconstruction quality, the impact
of its specific implementation and parameter choices on physics performance has not
yet been systematically studied. The algorithm’s current parameters, including energy
thresholds and neighbor requirements, appear to have been chosen empirically rather than
through explicit optimization for particular physics objectives. Furthermore, the splitting
procedure operates on rigid thresholds for energies and calorimeter regions, which may
not be optimal across the full range of physics scenarios.

This thesis presents a comprehensive study of topo-cluster splitting and its impact on
boosted object identification in ATLAS. Using Monte-Carlo simulations of top and 𝑊/𝑍
jets from hypothetical 𝑊 ′ and 𝑍′ boson decays together with dijet background samples,
the effect of topo-cluster splitting on jet reconstruction is investigated at multiple levels:
from individual calorimeter cells through clusters to complete jets. Novel methods are
developed for matching truth-level particle information to reconstructed clusters and for
comparing split and non-split cluster configurations. Through systematic analysis of jet
substructure variables and their discriminating power, the performance implications of
different splitting strategies are quantified.

The thesis is structured as follows. First, the theoretical context is presented, introducing
the Standard Model of particle physics, and the physics of jet formation. The Large
Hadron Collider and the ATLAS detector are then described, with particular emphasis
placed on the calorimeter systems central to this study. The jet reconstruction process
is examined in detail, including the topo-clustering and splitting algorithms that form
the core of the investigation. The analysis methodology and Monte-Carlo datasets are
presented, followed by detailed studies of splitting effects at the jet, cluster, and cell
levels. The thesis concludes with a grid search for improved splitting parameters. In an
outlook, opportunities for future improvements in jet reconstruction and boosted object
identification are discussed.
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1.1 The Standard Model
The Standard Model of particle physics (SM) [8–11] (Figure 1) is considered the most
accurate theory in the entire field of physics. It provides a unified description of the
electromagnetic, weak, and strong interactions between fundamental particles. The SM
is consistent with numerous experiments and observations, including the discovery of the
Higgs boson in 2012 at CERN [12,13].

Mathematically, the SM is a quantum field theory based on the gauge group
SU(3)C × SU(2)L × U(1)Y, where SU(3)C is the gauge group of Quantum Chromody-
namics (QCD), describing the strong interaction, and SU(2)L × U(1)Y describing the
electroweak interaction.

Despite its successes, the SM is known to be incomplete, as it does not incorporate gravity¹
[14] or neutrino masses [15], and cannot explain observed phenomena such as the cosmic
matter–antimatter asymmetry [16], the nature of dark matter [17], and the accelerated
expansion of the Universe (“dark energy”).
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Figure 1:  Overview of the particles in the Standard Model. Adapted from [18].

¹The effects of gravity are negligible at the mass/energy scale of collider experiments for the foreseeable
future.
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Figure 1 shows the fundamental particles and their properties as described by the
Standard Model. Fermions (left in the figure; half-integer spin) are the building blocks
of matter. They are divided into three generations (flavors) of increasing mass, each
consisting of two types of quarks (up/down-type) and two types of leptons (an electri-
cally charged lepton and a neutrino). While ordinary matter consists of first-generation
fermions (up/down quarks and electrons), heavier fermions can be produced in high-
energy collisions, but quickly decay into lighter particles. Furthermore, each fermion has
a corresponding antiparticle with the same mass and spin but opposite charges.

Bosons (right in the figure; integer spin) are force carriers that mediate the interactions
between fermions. The photon (𝛾) mediates the electromagnetic force, the 𝑊+, 𝑊−, and
𝑍0 bosons mediate the weak force, and the eight gluons (𝑔) mediate the strong force.

As the only scalar boson, the Higgs boson (𝐻) is a manifestation of the Higgs field,
which gives mass to elementary particles through the Higgs mechanism [19–24]. The Higgs
field has a non-zero vacuum expectation value 𝑣 ≈ 246 GeV, spontaneously breaking the
electroweak symmetry SU(2)L × U(1)Y ⟶ U(1)EM. As a result, quarks, charged leptons,
and the 𝑊/𝑍 bosons acquire mass, while photons, gluons and (in the minimal SM)
neutrinos remain massless.

1.1.1 QCD Coupling, Asymptotic Freedom, and Confinement

The strong interaction, being based on the non-Abelian SU(3)C gauge group, has special
properties that distinguish it from the electromagnetic and weak interactions. First, unlike
photons in Quantum Electrodynamics (QED), gluons carry color charge themselves and
can therefore interact with each other. Second, the strength of the strong interaction,
characterized by the strong coupling constant 𝛼𝑠, depends on the momentum-transfer
scale 𝑄 of the interaction. As this scale increases, the strong coupling becomes weaker,
a phenomenon known as asymptotic freedom. On the other hand, at low momentum scales
and large distances, the strong coupling becomes large enough to create quark–antiquark
pairs from the vacuum, leading to the formation of bound states called hadrons instead
of free quarks or gluons. This property is called confinement: Isolated color charges are
not observed in nature; they are always confined within color-neutral hadrons, such as
protons and neutrons.

The interplay of asymptotic freedom and confinement determines the phenomenology of
high-energy collisions at 𝑝𝑝 colliders like the LHC. When a high-energy quark or gluon
is produced in a collision, it undergoes a cascade of emissions dominated by soft and
collinear radiation, known as a parton shower. As the shower evolves to lower momentum
scales, the increasing strong coupling leads to hadronization, where the colored partons
are bound into color-neutral hadrons. Because radiation is predominantly collinear at
high 𝑄 and color must be confined at low 𝑄, the hadrons from one energetic parton form
a collimated spray, which is observed in the detector as a jet. The overall direction and
energy of the jet are directly related to those of the initiating parton, while the internal
structure of the jet reflects whether the origin was a generic QCD shower or the decay
of a heavy object. In the latter case, the jet has several distinct regions of high energy
density, called prongs.
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1.1.2 Physics Beyond the Standard Model

It is because of the known incompleteness of the Standard Model that physicists are
actively searching for New Physics, also known as physics beyond the Standard Model
(BSM). BSM physics can manifest itself in various ways, such as the discovery of entirely
new particles or interactions, but also through small deviations in precision measurements
of known processes.

One possible manifestation of BSM physics is the existence of heavy gauge bosons,
commonly referred to as 𝑊 ′ and 𝑍′. These hypothetical particles are similar to the
Standard Model 𝑊  and 𝑍 bosons, but are predicted to have much higher masses and
can arise in various extensions of the Standard Model. A commonly used benchmark is
the Sequential Standard Model (SSM) [25], in which 𝑊 ′/𝑍′ have the same fermionic
couplings as 𝑊/𝑍 and serve as reference signals for reconstruction and tagging studies.
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1.2 CERN and the LHC
Since its founding in 1954, the Conseil Européen pour la Recherche Nucléaire² (CERN)
[26] has been at the forefront of particle physics research. It was at this international
institute that 𝑊 - and 𝑍-bosons were discovered using the Super Proton Synchrotron
(SPS) accelerator in 1983 [27,28], and where the Higgs boson was discovered in 2012
[12,13].

Today, it is home to the Large Hadron Collider (LHC) [2], the world’s largest and most
powerful particle accelerator. The LHC is a 27 km long ring located approximately 100 m
underground, where bunches of protons or heavy ions are accelerated to near the speed of
light and made to collide at four interaction points hosting the four major experiments:
ATLAS [6], ALICE [29], CMS [30], and LHCb [31].

The LHC has been in operation since 2008, consisting of several runs [32], interrupted
by long shutdowns used for upgrades of the machine and the detectors. Center-of-mass
energies 

√
𝑠 increased from 7 TeV in Run 1 (2010–2012) to 13 TeV in Run 2 (2015–2018)

and 13.6 TeV in Run 3 (2022 – est. 2026). At the same time, the luminosity (explained
below) delivered to ATLAS increased drastically, due to increases in ⟨𝜇⟩ (the average
number of simultaneous collisions per bunch crossing) and other improvements to the
accelerator complex. In Run 2, a peak instantaneous luminosity of 1.9 ⋅ 1034 cm−2 s−1 [33]
was reached, exceeding its design value of 1 ⋅ 1034 cm−2 s−1 [6] by 90 %, along with a peak
⟨𝜇⟩ of about 55 [33]. The integrated good for physics [33] luminosity at ATLAS for that
run was (140.1 ± 1.2) fb−1 [33]. ATLAS selects Luminosity Blocks (LBs), time intervals
of typically 1 min during which detector conditions are stable and data quality meets the
required standards, as good for physics. Only this subset is used for standard physics
analyses.

(Integrated) luminosity 𝐿 is the measure of the number of potential collisions per area
integrated over a given time period. It is related to the number of events 𝑁  expected for
a certain process with cross-section 𝜎 via

𝜇𝑁 = 𝐿𝜎, (1)

where 𝜇 is the average number of interactions per bunch crossing.

After another long shutdown with major upgrades to both LHC [34] and ATLAS [35],
the High-Luminosity LHC (HL-LHC) is scheduled to begin operation in 2029. While the
collision energy will increase only slightly to 14 TeV, compared to 13.6 TeV in Run 3, it is
planned to increase LHC’s integrated luminosity by a factor of 10 and the instantaneous
luminosity by a factor of 5 beyond the original design value [34]. The increased luminosity,
and thus the larger number of observed interactions, will reduce statistical uncertainties
and improve sensitivity to rare processes. This comes at the cost of increased pile-up
(explained in Section 1.3.3), posing significant challenges for detector performance and
data analysis. Pile-up mitigation techniques will thus become even more crucial in the
HL-LHC era.

²European Organization for Nuclear Research
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1.3 The ATLAS Detector
The ATLAS (A Toroidal LHC ApparatuS) detector [6] is one of the two general-purpose
detectors at the LHC, the other being CMS (Compact Muon Solenoid) [30]. Backed
by the largest collaboration at CERN, ATLAS is also the largest detector, measuring
approximately 44 m in length and 25 m in height, with a total weight of about 7 000 t.
As a general-purpose detector, ATLAS provides the means for broad searches for new
phenomena and high-precision measurements of Standard Model processes. Accordingly,
it is designed to cover nearly the entire solid angle around the collision point, using a
variety of subdetectors to identify and measure different types of particles produced in
the collisions: an inner detector for tracking charged particles, calorimeters for measuring
particle energies, and muon spectrometers for identifying and measuring muons. Strong
magnets curve the trajectory of charged particles, allowing for reconstruction of their
charge and momenta: A thin 2 T solenoid magnet surrounds the inner detector, while
an array of toroidal magnets in between the barrel muon chambers provides a magnetic
field in the barrel and endcap regions of the muon spectrometer. The aforementioned
components are shown in Figure 2. In Figure 3, the typical signatures of different particles
throughout the subdetectors of ATLAS are presented. Charged particles leave tracks
in the inner detector, bent by the solenoid magnetic field. Electrons and photons then
deposit their energy via showers in the electromagnetic calorimeter, while hadrons tend to
penetrate deeper into the hadronic calorimeter and shower there. Apart from neutrinos,
which escape the detector without interaction, muons are the only charged particles that
typically reach the muon spectrometer, where they leave additional tracks bent by the
toroidal magnetic field.

Figure 2:  Subdetectors of the ATLAS experiment in its Run 2 configuration. [6]
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Figure 3:  Different particle signatures throughout the subdetectors of the ATLAS
experiment. Adapted from [36].

1.3.1 Coordinate System

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction
point, the 𝑥-axis pointing toward the center of the LHC ring, the 𝑦-axis pointing upward,
and the 𝑧-axis tangential to the beam line [6]. To better capture the rotational symmetry
of the detector as well as boosts along the beam axis, positions of particles and calorimeter
cells are typically given in pseudorapidity–azimuthal-angle space: The azimuthal angle 𝜙
is measured around the beam axis and thus lies in the 𝑥𝑦 plane. The pseudorapidity 𝜂 is
defined as

𝜂 = − ln(tan(𝜃
2
)), (2)

where 𝜃 is the polar angle of the particle with respect to the beam axis. For massive
particles, the rapidity 𝑦 is used instead, defined as

𝑦 = 1
2

ln(𝐸 + 𝑝𝑧
𝐸 − 𝑝𝑧

), (3)

where 𝐸 is the energy and 𝑝𝑧 is the longitudinal momentum of the particle (parallel to
the beam axis). Angular distances are then measured as

Δ𝑅 = √(Δ𝜂)2 + (Δ𝜙)2. (4)
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1.3.2 Calorimeter

The ATLAS calorimeter system is designed to precisely measure the energy of both
electromagnetic and hadronic showers. It is housed in three cryostats, one barrel and two
end-caps, and consists of multiple subsystems using different technologies.

Although specifics vary between the subsystems, most calorimeters in ATLAS are sam-
pling calorimeters using either liquid argon (LAr) or scintillating tiles as active material.
Sampling calorimeters, in contrast to homogeneous calorimeters, alternate layers of active
and passive material to contain showers in a more compact and cost-effective manner at
the expense of energy resolution.

Figure 4 visualizes how the ATLAS calorimeters are arranged and which ones are traversed
by particles with different pseudorapidities (𝜂). Longitudinally, a clear separation between
the barrel and both endcaps is visible. For |𝜂| ≲ 1, particles traverse the barrel calorime-
ters, while for 1 ≲ |𝜂| ≲ 3.2, they pass through the endcap calorimeters. Beyond that,
particles enter the forward calorimeters which extend the coverage to |𝜂| ≲ 4.9.

A given cell’s position in a calorimeter is defined by its location in 𝜂, 𝜙, and the sampling
layer it belongs to. Besides the deposited energy, the information available per cell includes
the time of the energy deposit and the significance as the ratio of energy to noise, as it is
used in topo-cluster formation (see Section 2.1.2).

Section C in the appendix lists the names and properties of the individual sampling layers
in the ATLAS calorimeter system, as they were in Run 2 (2015–2018).

Figure 4:  Layout of the ATLAS calorimeters with pseudorapitidy (𝜂) values marked
for reference. [37]
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1.3.3 Pile-up

Beyond electronic noise, the dominant source of noise in the calorimeters is pile-up, which
refers to additional proton-proton interactions.

A distinguishment is made between two types of pile-up: In-time pile-up originates
from other collisions in the same bunch crossing (the number of which is given by
𝜇), whereas out-of-time pile-up stems from collisions in other bunch crossings, both
before and after the bunch crossing of interest. For physics analyses, this needs to be
accounted for. Mitigations include pulse shaping (Figure 5), which ensures that the energy
integrates to zero, averaging out the effect of out-of-time pile-up, and the use of topo-
clusters (Section 2.1.2) instead of individual calorimeter cells as input to jet algorithms
(Section 2.1.5).

Figure 5:  The shaped calorimeter response (■) to a triangular pulse (■).
Points indicate the sampling at 25 ns intervals. Adapted from [6].
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2 Jets
Having discussed the QCD foundations that underlie jet formation in Section 1.1.1, this
chapter focuses on how jets are defined and reconstructed in ATLAS. It introduces the
topo-clustering and splitting algorithms subject to investigation in this thesis.

Jets are not synonymous with physical objects, but rather a helpful concept representing
a collection of particles that are likely to have originated from a single high-energy
interaction. Importantly, current detector technology cannot provide enough information
to reconstruct jets and assign them to particles unambiguously; instead, the original
particle’s energy and direction are approximated as well as possible while rejecting noise
from sources like pile-up and electronics. For this reason, different reconstruction algo-
rithms and configurations (described in Section 2.1.6) are chosen for different purposes.

Figure 6 illustrates how decay products of highly boosted particles can be collimated,
so that the otherwise independent jets become subjets of a single large-radius jet. Upon
reconstruction, they make up a jet’s substructure, which can be parametrized by various
observables (see Section 2.2). Distinct regions of high energy density are also referred to
as prongs.

Substructure variables are observables designed to study a jet’s internal structure
to differentiate between jets originating from different processes (e.g. QCD vs. hadronic
𝑊/𝑍 decay). They probe features such as the number of hard prongs, the distribution
of energy within the jet, and the angular separation of constituents. By quantifying
these aspects, substructure variables enable the identification of jets from boosted heavy
particle decays and help suppress backgrounds from ordinary QCD jets. They have become
essential tools in modern collider analyses, especially in searches for new physics involving
highly energetic, collimated decays.

low boost high boost

Figure 6:  Schematic depiction of how boosted quarks from the decay of a heavy
particle are collimated into a single large-radius jet. Adapted from [38].
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2.1 Jet Reconstruction
Jet reconstruction consists of multiple steps, including the formation of input objects,
the clustering of these objects into jets using a jet algorithm (using e.g. sequential
recombination algorithms), and the calibration of the resulting jets to correct for detector
effects.

2.1.1 IRC Safety

Sequential recombination algorithms as well as substructure variables must satisfy two
important properties: Infrared (IR) safety and collinear safety, often abbreviated as
IRC safety. These properties ensure that the algorithm’s result does not change when
adding soft (IR) emissions that deviate significantly from the jet axis or collinear
particles along the jet axis, respectively, which are common occurrences in QCD processes
(see Section 1.1.1). Figure 7 illustrates these properties.

= =

baseline IR safety collinear safety

Figure 7:  Illustration of infrared and collinear safety. From top to bottom: Energy
deposits in the calorimeter, Feynman-like diagrams of the particles making up the jets,
and the reconstructed jets. The reconstructed jets are not affected by the addition of

soft particles (center) or the “splitting” into collinear particles (right).
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2.1.2 Topological Clustering

The topological clustering (topo-clustering) algorithm [7] is used by the ATLAS collabo-
ration to group calorimeter cells into topo-clusters. Jet reconstruction algorithms then use
these topo-clusters as input objects to form jets. This approach is historically superior to
using individual calorimeter cells, as it reduces the impact of electronic noise and pile-up
(see Section 1.3.3).
The algorithm utilizes the cells’ significance, which is defined as the ratio of the cell signal
to the average (expected) noise σ in this cell:

𝜍 =
|𝐸EM

cell |
𝜎noise

=
|𝐸EM

cell |

√(𝜎electronic)
2 + (𝜎pileup)

2
. (5)

(1) (2) (3) (4)
Figure 8:  Illustration of the topo-clustering algorithm steps. Cells colored in red/
orange/yellow are seed/growth/boundary cells, respectively. The hatching pattern

indicates cells belonging to the proto-cluster. For this example, diagonal neighbors are
not considered.

Figure 8 demonstrates the steps of the algorithm. In the first step (1), the algorithm
selects seed cells with 𝜍 > 𝑆 that are located in certain allowed calorimeter regions to
each “seed” a proto-cluster. Secondly (2 and 3), these intermediate clusters are grown
by repeatedly adding neighboring cells with 𝜍 > 𝑁 , where 𝑁  is a threshold for growth
control. Adjacent proto-clusters are merged. Finally (4), all cells neighboring the cluster
(“boundary cells”) that satisfy 𝜍 > 𝑃  are added to the cluster.
In practice, the thresholds 𝑆 > 𝑁 ≥ 𝑃  are set as follows [7]:

seed 𝑆 = 4,
neighbor 𝑁 = 2,
principal 𝑃 = 0.

(6)

The choice of 𝑃 = 0 means that in the last step, all neighbor cells are added to the
cluster, regardless of their signal significance. This allows for the inclusion of cells with
energies similar to noise levels, improving energy resolution while still suppressing pure
noise fluctuations. Cells that have negative energies (due to pulse shaping and electronic
noise) require special treatment. While the clustering algorithm considers the absolute
value of cell energies, so that clusters can be seeded by and incorporate both positive-
and negative-energy cells, jets are built using clusters with positive overall energy only.
Still, negative-energy clusters are useful for pile-up suppression and for estimating the
overall noise in a given event.
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Topo-clusters and jets thus have a many-to-many relationship: A single jet can contribute
to multiple topo-clusters, but multiple jets can also overlap and have contributions to the
same topo-cluster.

2.1.3 Topo-Cluster Splitting

In some cases, particularly with extremely boosted jets, the proto-clusters formed by
the topo-clustering algorithm can grow too large, obscuring the substructure from jet
reconstruction algorithms, as those operate on topo-clusters as indivisible units. An
example of this is shown in Figure 9, where a single large topo-cluster is formed without
splitting, while splitting results in 15 smaller topo-clusters.

Figure 9:  One jet with and without splitting. Without splitting (right), only a single
large topo-cluster is formed, while splitting (left) results in 15 smaller topo-clusters.

To counteract this, a splitting algorithm is applied to the proto-clusters after their
aforementioned formation. The algorithm identifies local signal maxima within a cluster
and splits the cluster between them, by iteratively growing sub-clusters³ around these
maxima. Although the principle of growing clusters from seed cells is similar to the topo-
clustering algorithm, there are major differences: The splitting algorithm considers the
actual cell energies, which need to exceed 500 MeV to be considered local maxima (seeds)
[7]. Furthermore, in a first step, only maxima from the sampling layers EMB2, EMB3,
EME2, EME3, and FCAL0 are considered, as these provide more granular information
than the coarser hadronic layers. No 𝜍 or 𝐸 thresholds impede the growth of sub-clusters,
only the boundary of the original cluster is respected.

If in one growth step two or more sub-clusters meet, boundary cells are assigned to the
two highest-energy sub-clusters with weights that depend on the distance 𝑟 to the sub-
cluster centres of gravity 𝑑1, 𝑑2 as well as their energies:

³This term is introduced here for clarity; it does not appear in the references.
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𝑤geo
cell,1 =

𝐸EM
cluster,1

𝐸EM
cluster,1 + 𝐸EM

cluster,2
,

𝑤geo
cell,2 = 1 − 𝑤geo

cell,1,

𝑟 = exp(𝑑1 − 𝑑2).

(7)

2.1.4 Local Hadronic Cell Weighting

Several effects cause the energy that a jet deposits in the calorimeters to differ from its
true energy at particle level. To correct for these effects, topo-clusters are calibrated using
a series of steps, outlined in Figure 10, which together are referred to as Local Hadronic
Cell Weighting (LCW).

Due to the non-compensating nature of the ATLAS calorimeters, their response to
hadrons is lower than their response to electromagnetic particles of the same energy.
Physical reasons for this include invisible energy losses to nuclear breakup and the
production of neutrinos. A correcting factor must thus be introduced that is different for
electromagnetic and hadronic showers:

𝑤had-cal
cell ≠ 𝑤em-cal

cell = 1. (8)

Therefore, a classification step is included that estimates the probability 𝒫EM
clus  of a topo-

cluster being electromagnetic-like (or hadronic-like). This is done based on the cluster’s
shape and energy density. The appropriate calibration factors are then applied based on
this classification, and the result is weighted by the classifier’s confidence 𝒫EM

clus .4

𝑤cal
cell = 𝒫EM

clus · 𝑤cal-em
cell + (1 − 𝒫EM

clus ) · 𝑤cal-had
cell , (9)

where 𝑤cal-em
cell  and 𝑤cal-had

cell  are composed of several factors outlined in Figure 10.

topo-cluster
formation

cluster
classification

calibration out-of-cluster
corrections

dead material
corrections

𝑤geo
cell 𝒫EM

clus

𝑤had-cal
cell

𝑤em-cal
cell

𝑤had-ooc
cell

𝑤em-ooc
cell

𝑤had-dm
cell

𝑤em-dm
cell

Figure 10:  Overview of calibration steps and corresponding weights. Based on [7].

When using variables subject to calibration, their calibration state must be considered.
For example, the energy of a cluster can be referred to as 𝐸EM

clus before calibration or
𝐸LCW

clus  after LCW calibration. Hereafter, the electromagnetic scale is assumed and the EM
superscript is omitted for brevity, with exceptions explicitly noted.

4This is preferred over a hard classification to avoid inconsistencies due to misclassifications.
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2.1.5 Overview of Jet Algorithms

A variety of algorithms exists to reconstruct jets, drawing on different detector compo-
nents and providing best results in different kinematic regimes.

As the present work focuses on the topo-clustering aspect of jet reconstruction, LCTopo
jets are chosen as the baseline jet definition. While the other jet definitions mentioned
below also employ topo-clustering, their additional inputs and reconstruction steps would
introduce unnecessary complexity to the study of topo-cluster splitting.

LCTopo jets5 [7] are reconstructed from calorimeter information only, using the topo-
clustering algorithm to group energy deposits in the calorimeter into topological clusters.
These topological clusters are then combined into jets using sequential recombination
algorithms, such as the anti-𝑘𝑡 algorithm. Because they do not rely on tracking infor-
mation, LCTopo jets are the only option beyond the inner detector acceptance (|𝜂| > 2.5;
see Section 1.3.2) and remain a robust baseline throughout the detector. The sole reliance
on the coarser calorimeter granularity comes at the cost of foregoing track-based angular
precision and pile-up mitigation.

PFlow (Particle Flow) jets [39] are reconstructed from a combination of calorimeter
and tracking information. The same topo-clustering algorithm is used in the calorimeter,
but the resulting topological clusters are combined with tracks to form Particle Flow
Objects (PFOs). In practice, PFlow uses track momenta at low–moderate 𝑝𝑇 , where
they are most precise, and defers to calorimeter energies as 𝑝𝑇  increases, yielding near-
optimal resolution across the jet’s kinematic range. Energy deposits in the calorimeter
are then matched to tracks in the inner detector, and the calorimeter energy associated
with each matched track is removed from the event, to avoid double-counting of charged
particles. PFlow is used primarily for small-R jets at low to moderate 𝑝𝑇 , within the
tracker acceptance.

TCCs (Track-CaloClusters) [40] use inner-detector track directions together with
calorimeter energy to form an input type for jets that resolves dense, collimated structure
while retaining calorimeter energy for charged particles (unlike PFOs, which replace
it using tracks). They perform best at high 𝑝𝑇 , where momentum measurements from
the inner detector become less reliable, while the resolution of collimated jets in the
calorimeter can still be improved using tracking information. At low 𝑝𝑇 , however, TCCs
are outperformed by both LCTopo and PFlow jets in terms of resolution and pile-up
stability.

Unified Flow Objects (UFOs) [41] are the state-of-the-art in large-R jet reconstruction
at ATLAS [42], combining the strengths of both PFlow jets and TCCs at different 𝑝𝑇
ranges. By using PFlow-like objects at lower 𝑝𝑇  and TCC-like objects at higher 𝑝𝑇 , UFO
large-R jets provide the best performance across the entire 𝑝𝑇  spectrum.

5The name LCTopo stands for jets built from topological clusters calibrated with LCW (Section 2.1.4)
at the cluster level.

JETS 15



2.1.6 Sequential Recombination Algorithms

Though not the only option, the ATLAS collaboration primarily employs sequential
recombination algorithms for jet reconstruction. These algorithms iteratively merge pairs
of input objects (e.g. calorimeter topo-clusters or particle-flow objects) to form jets,
based on a distance measure that typically incorporates both their spatial separation and
transverse momenta. There are many variants of sequential recombination algorithms,
differing mainly in the specific distance measure used and the order in which objects
are merged, but the most widely used sequential recombination algorithms in ATLAS
analyses are those in the 𝑘𝑡 family.

The family of 𝑘𝑡 algorithms operates on two distance measures, namely the distance
between pairs of objects 𝑖 and 𝑗,

𝑑𝑖𝑗 = min(𝑝2𝑝
𝑇,𝑖, 𝑝

2𝑝
𝑇,𝑗)

Δ𝑅2
𝑖𝑗

𝑅2 , (10)

and the distance between each object 𝑖 and the beam,

𝑑𝑖𝐵 = 𝑝2𝑝
𝑇,𝑖 , (11)

where Δ𝑅𝑖𝑗 is the distance between particles 𝑖 and 𝑗 in the 𝜂-𝜙 plane (see Equation 4),
𝑅 is the jet radius, controlling the typical size of the jets, 𝑝𝑇,𝑖 is the transverse momentum
of particle 𝑖 with respect to the beam axis, and 𝑝 is a parameter (explained below) that
impacts the distance measure and consequently the shape of the resulting jet.

The algorithm starts with a list of input objects such as topo-clusters, each representing
a proto-jet. It then computes all 𝑑𝑖𝑗 as well as 𝑑𝑖𝐵. If 𝑑𝑖𝐵 < 𝑑𝑖𝑗∀𝑗, object 𝑖 is considered
a final jet and not changed in further iterations.

The choice of 𝑝 determines the order in which particles are clustered:
For 𝑝 = −1, the anti-𝑘𝑡 algorithm [43] is obtained, which clusters hard particles first,
leading to more regular, conical jet shapes that are relatively robust against pile-up. This
algorithm is the default choice for jet reconstruction in ATLAS analyses.
For 𝑝 = 0, the Cambridge-Aachen algorithm [44,45] is obtained, which clusters
particles based solely on their angular separation, neglecting their transverse momenta.
Cambridge-Aachen is mainly used for declustering, a technique that is relevant for
jet grooming (see Section 2.1.7).
For 𝑝 = 1, the original 𝑘𝑡 algorithm [46] is obtained, which clusters soft particles
first. It is less commonly used for final jet reconstruction but provides the basis for the
exclusive-𝑘𝑡 algorithm (see below).

The ATLAS collaboration distinguishes between small-R (𝑅 = 0.4) and large-R (𝑅 = 1)
jets [47]. While smaller radii improve pile-up rejection, larger radii are better suited to
reconstruct boosted objects like the 𝑊 ′/𝑍′ decay products discussed in this thesis.
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The exclusive-𝑘𝑡 algorithm [48] is a variant of the 𝑘𝑡 algorithm (with 𝑝 = 1) that stops
the clustering process according to some criterion, usually when a predefined number of
proto-jets 𝑁  or a distance threshold 𝑑cut is reached. This is useful for jet substructure
studies (see Section 2.2.1), where the same jet is split into different fixed numbers of
subjets to probe which configuration best describes the jet’s internal structure.

2.1.7 Jet Grooming

Grooming removes soft, wide-angle radiation and pile-up contributions from jets to
stabilize jet mass and substructure observables. In ATLAS, LCTopo jets have historically
been groomed with trimming [49], wherein jet constituents are reclustered into subjets
of radius 𝑅sub ≪ 𝑅 and any subjet carrying a 𝑝𝑇  fraction below 𝑓cut (relative to the
ungroomed jet’s 𝑝𝑇 ) is discarded; typical settings are 𝑅sub = 0.2 and 𝑓cut = 0.05. This
also applies to the large-R jets used in this thesis.

More recently, the ATLAS collaboration has also started using soft drop [50], which
reclusters the jet using the Cambridge-Aachen algorithm and then iteratively declusters
it, (i.e. reverses the recombination sequence) removing soft wide-angle radiation until a
certain condition is met.

Other widely used grooming/tagging variants include pruning [51], which discards soft,
large-angle recombinations during clustering, and filtering / (modified) mass-drop [52,53],
which identifies a heavy-particle-like splitting and then refines the jet by reclustering and
keeping only the hardest small-radius subjets.

2.1.8 Jet Energy Scale Calibration

While LCW corrects for non-compensation and local response variations at the cluster
level, additional effects remain at the jet level. In this work, the jets reconstructed
from LCW-calibrated topo-clusters are further corrected by the Jet Energy Scale (JES)
calibration [54,55], applied after anti-𝑘𝑡 jet finding and grooming.

It consists of several steps: an offset correction removes extra energy from pile-up interac-
tions; a MC-based response calibration corrects the mean jet response as a function of 𝑝𝑇
and 𝜂, so reconstructed jets match particle-level jets in simulation; an origin (direction)
correction repoints the jet to the primary vertex, updating its four-vector accordingly;
and small in-situ residuals align data with truth after the MC step.

A more detailed description of the JES calibration procedure can be found in [54] and [55].
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2.2 Jet Substructure Variables
Substructure variables are observables that characterise the internal structure of jets.
They are useful for distinguishing jets originating from different types of particles, as
their decay products lead to different radiation patterns and energy distributions within
the jet.

2.2.1 𝑁-subjettiness 𝜏𝑁

The 𝑁 -subjettiness 𝜏𝑁  can be thought of as a distance measure, namely between the
“energy deposits” in the jet and 𝑁  subjet axes. It was introduced in [3] in analogy to the
event-wide 𝑁 -jettiness [56], where it was used to veto additional jet emissions. Low 𝜏𝑁
indicate that the jet has a clear 𝑁 -prong substructure, whereas less “clusteredness” or a
different number of prongs leads to higher 𝜏𝑁 . The relative value of 𝜏𝑁  for different 𝑁
can thus be used to estimate the number of subjets in a jet.

The 𝑁 -subjettiness of a jet is defined as

𝜏𝑁 = 1
𝑑0

∑
𝑘

𝑝𝑇,𝑘 min{Δ𝑅1,𝑘, Δ𝑅2,𝑘…, Δ𝑅𝑁,𝑘}, (12)

where 𝑘 is an index over all particles in the jet, Δ𝑅𝐽,𝑘 is the angular distance between
particle 𝑘 and (implicit) subjet axis 𝐽 , and 𝑑0 is a normalization factor defined as

𝑑0 = ∑
𝑘

𝑝𝑇,𝑘𝑅0, (13)

with the jet radius 𝑅0 that was used in the jet’s construction.

𝑁 -subjettiness itself is IRC safe due to its linearity in the momenta of the constituent
particles and the smooth angular dependence [3]. Since it depends on subjet axes, these
must also be determined in an IRC safe way, e.g. via exclusive-𝑘𝑇  clustering (explained
in Section 2.1.6).

In practice, ratios like

𝜏21 = 𝜏2
𝜏1

(etc.) (14)

are used due to their superior discriminating power [3].

Figure 11 illustrates how 𝜏1 and 𝜏2 can be used to distinguish between jets originating
from hadronic 𝑊  decays and those from QCD processes.
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Figure 11:  Schematics of fully hadronic decays in (a) 𝑊+𝑊− and (c) dijet QCD events
alongside typical event displays in (b) and (d). 𝜏1 resp. 𝜏2 quantify the alignment of
the energy deposits with the outlined square (□) resp. the outlined circles (○). Filled
rectangles (■) in (b) and (d) indicate the energy deposits in the calorimeter cells by
their size, while the color indicates how the exclusive-𝑘𝑇  algorithm divides them into

two clusters. Adapted from [3].
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2.2.2 Energy correlation functions 𝑒𝑛 and their ratio 𝐷2

Energy correlation functions (ECFs) [4] are another family of jet substructure observables
that can be used to identify the prong-like structure of jets. Unlike 𝜏𝑁  and other axis-based
substructure observables,6 ECFs are not only IRC-safe, but also recoil-insensitive, meaning
that their value does not acquire an extra change when soft, wide-angle radiation merely
tilts the jet axis, as they depend only on inter-particle angles and momenta. Soft emissions
still contribute directly, but cannot bias the observable through axis displacement.

As an example, in a jet with a soft wide-angle secondary lobe, 𝜏21 can falsely indicate 2-
pronginess, because exclusive-𝑘𝑇  partitions the jet into two regions and measures distances
to those subjet axes. ECF ratios like 𝐷2 instead increase in that configuration, correctly
flagging the second prong is soft/wide-angle rather than a genuine hard 2-prong.

The ECFs are defined7 as

𝑒(𝛽)
2 ≡ 1

(𝑝𝑇 𝐽)
2 ∑

1≤𝑖<𝑗≤𝑛𝐽

𝑝𝑇 𝑖𝑝𝑇 𝑗 𝑅𝛽
𝑖𝑗,

𝑒(𝛽)
3 ≡ 1

(𝑝𝑇 𝐽)
3 ∑

1≤𝑖<𝑗<𝑘≤𝑛𝐽

𝑝𝑇 𝑖𝑝𝑇 𝑗𝑝𝑇 𝑘𝑅𝛽
𝑖𝑗𝑅

𝛽
𝑖𝑘𝑅𝛽

𝑗𝑘,
(16)

where (𝑝𝑇 )𝐽  is the transverse momentum of the jet with respect to the beam, (𝑝𝑇 )𝑖 is
the transverse momentum of the 𝑖-th particle in the jet, 𝑛𝐽  is the number of particles
in the jet, and 𝛽 is the angular exponent. 𝛽 may be tuned to adjust the sensitivity to
collinear splittings. As an example, 𝛽 ≈ 0.2 is ideal for quark/gluon discrimination [4].
For any 𝛽 > 0, ECFs are IRC safe.

As with 𝜏21, a ratio is used to identify two-prong substructure [5]:

𝐷2 = 𝑒(𝛽)
3

(𝑒(𝛽)
2 )

3 (17)

It has been chosen because it best follows the empirical boundaries between 1-prong QCD
and 2-prong jets in the (𝑒2, 𝑒3) plane and was the best-performing observable for 𝑊  boson
tagging at ATLAS in Run 2 [57].

6This applies if the axes are determined using methods like exclusive-𝑘𝑇 , as done here.
7The normed ECFs 𝑒𝑛 proposed in [5] are given instead of the originally proposed ECF [4]; their relation is

𝑒(𝛽)
𝑛 = ECF(𝑛, 𝛽)

(ECF(1, 𝛽))𝑛 . (15)
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3 Analysis
This chapter introduces the Monte-Carlo samples and methods used in this study
and presents observations on jet-level, cluster-level and cell-level features. Matching of
Monte-Carlo truth constituents to clusters and split to non-split clusters is discussed.
Furthermore, the results of a gridsearch for improved parameters for the cluster splitting
algorithm are presented.

3.1 Methods
To start, a brief overview of the tools employed in this thesis to compare distributions
and evaluate the cutting power of variables is given.

3.1.1 Earth-Mover’s Distance (EMD)

In order to compare different distributions of features, the (standardized) Earth-Mover's
Distance (EMD) [58], also known as Wasserstein Distance, is used. It is a means of
comparing two distributions in a shared metric space by measuring the minimum amount
of “work” 𝑊  (amount × distance as with the physical equivalent) required to transform
one distribution into the other. Contrary to comparisons of the mean or select statistical
moments, the EMD takes into account the full distribution of the data.

After computing the EMD 𝑊 8 using scipy.stats.wasserstein_distance  [59], it is
normalized based on the standard deviation of the combined distributions:

𝑊std = 𝑊
𝜎combined

. (18)

As exemplified in Figure 12, this makes the EMD invariant to the scale of the distributions,
allowing for better comparability of EMDs between different features.

Figure 12:  After standard-scaling, the EMD between the two blue (filled) Gaussian
peaks is equal to the EMD between the two orange (outlined) Gaussian peaks.

8Standard scaling can equivalently be applied to the data before computing the EMD.

ANALYSIS 21



3.1.2 ROC Curves and AUC Metric

Radio Operating Characteristic (ROC) curves [60] and Area Under the Curve (AUC)
are commonly-used metrics in machine learning to evaluate the performance of binary
classifiers. They incorporate the trade-off between true positive rate (TPR) and false
positive rate (FPR) across different classification thresholds, so that the AUC summarizes
the overall performance of a classifier into a single value, namely the area under the
ROC curve.

TPR and FPR are defined as follows:

TPR = true positives
true positives + false negatives

FPR = false positives
false positives + true negatives

,
(19)

where positive and negative refer to the two classes of the binary classification problem,
and true/false indicates whether the classification was correct or not.

In this thesis, ROC curves are used to evaluate the performance of simple one-sided
cuts, where a variable is compared to a threshold to classify events as signal or
background. The ROC curve is generated by varying the threshold and plotting the TPR
against the FPR at each threshold. In practice, ROC and AUC are computed using
sklearn.metrics.roc_curve  and sklearn.metrics.roc_auc_score , respectively [61].

In a balanced dataset, a model with an AUC of 0.5 indicates no discrimination ability
(random guessing), whereas an AUC of 1 indicates perfect discrimination. While values
below 0.5 correspond to a model that is “worse” than random guessing, it is evident
that they still provide some information about the data [62]. Since ROC curves in this
thesis only serve as a proxy for the performance of 𝑊/𝑍-boson and top-quark tagging
algorithms (which are usually more sophisticated than a simple threshold on a single
variable), the target is inverted so that the AUC is always ≥ 0.5.

The shape of the ROC curve depends on the distributions of the signal and background
events for the variable being used for classification. In the case of two Gaussian
distributions with different means, the ROC curve will have a characteristic convex
shape, as shown in Figure 13 and Figure 14. The more the distributions overlap, the
closer the ROC curve will be to the identity line, indicating that the classifier is less
effective at distinguishing between signal and background. For a Gaussian signal atop a
uniform background, however, the ROC curve takes on a sigmoidal shape, as illustrated
in Figure 15. Considering a right-sided threshold (i.e. classifying events as signal if the
variable exceeds the threshold) that is gradually lowered from 2 to −2, the ROC curve
starts off below the identity line (for low FPR values), as the constant background
dominates in the [1, 2] region, leading to a TPR that is lower than the FPR. Passing the
mean of the Gaussian at 0, where signal and background are equal, the opposite occurs,
resulting in the characteristic sigmoidal shape of the ROC curve.
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Figure 13:  Two Gaussian distributions with different means (left) and the
corresponding ROC curve (right).

Figure 14:  Two Gaussian distributions with more overlap (left) result in a less ideal
ROC curve (right).

Figure 15:  A Gaussian signal distribution atop a uniform background (left) leads to a
sigmoidal ROC curve (right).
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3.1.3 Processing

Most processing is performed using Awkward Array [63], a Python library that is part
of SciKit-HEP. It allows operating on the ragged data structures inherent to the low-
level data at hand (different numbers of clusters containing different numbers of cells
each) with NumPy-like syntax and performance, eliminating the need for lookup tables,
explicit loops, or other cumbersome methods.
Plots are created with Matplotlib [64] and Seaborn [65].

3.2 Monte-Carlo Samples
The Monte-Carlo samples used in this analysis include simulated decay events of exotic
𝑊 ′ and 𝑍′ bosons (as described in Section 1.1.2) as well as dijet background events.
Including both signal and background events allows to study not only the effect of topo-
clustering on different kinds of jets, but also the discriminating power of different jet
features. The samples are simulated to resemble the conditions (pile-up, 

√
𝑠, detector

configuration, etc.) during Run 2 of the LHC or more specifically the 2018 data-taking
period.

The 𝑊 ′ first decays into a 𝑊  and a 𝑍 boson, which then each decay into quark pairs,
resulting in a final state with two 2-prong jets (Figure 16). The full simulation procedure
is described in [66]. The 𝑍′ decays into a top-antitop pair, each decaying fully hadronically
into 𝑊𝑏 and subsequently into two 3-prong jets (Figure 17). Its simulation procedure is
described in [47].

Both the 𝑊 ′ and the 𝑍′ are defined with a resonance mass of 2 TeV. The corresponding
inelastic scattering events are simulated with Pythia 8.235 [67] at leading order (LO),
using the NNPDF2.3lo [68] set of parton distribution functions (PDFs) as well as
the ATLAS A14 [69] set of tuned parameters for the parton shower and multi-parton
interactions. GEANT4 [70] then simulates the response of the ATLAS detector. The cross-
sections are reweighted to produce a distribution of jets that is uniformly distributed in 𝑝𝑇 .

The dijet background samples (simulation described in [66]) represent the QCD back-
ground to the 𝑊 ′ and 𝑍′ signals. They cover two adjacent 𝑝𝑇  regions:
(1 300 − 1 800) GeV and (1 800 − 2 500) GeV. It is based on leading-order matrix elements
simulated with Pythia 8.230 [67] and the aforementioned NNPDF2.3lo [68] and
ATLAS A14 [69].

The effect of both in-time and out-of-time pile-up (Section 1.3.3) is modeled by overlaying
the simulated hard-scattering event with inelastic minimum-bias proton-proton collision
events, generated with Pythia 8.186 [67] using NNPDF2.3lo [68] and ATLAS A3 [71], a
set of tuned parameters specifically for modeling minimum-bias events [71]. The number
of pile-up interactions to be overlaid is sampled from the measured distribution obtained
from Run 2 data [72].
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Figure 16: Feynman diagram for the simulated 𝑊 ′ decay.
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Figure 17: Feynman diagram for the simulated 𝑍′ decay.

3.2.1 Data Format and Variations

The samples considered are in the Event Summary Data (ESD) format [73] instead of
the more commonly used Analysis Object Data (AOD) format, so that information about
individual clusters and their respective cells is available. The samples are provided in
ROOT files, each containing a TTree with entries corresponding to individual jets.

Each entry contains a set of features (variables) outlined in Figure 18, describing the jet
as a whole (jet-level) as well as its constituents (cluster-level) and cells thereof (cell-level).
Two runs of the reconstruction chain are included per event, one with and one without the
topo-cluster splitting algorithm enabled; all affected features are duplicated with different
names accordingly.9 In addition, Monte-Carlo truth information about the simulated
hard-scattering event is available for each jet. This includes the “true” identity of the
jet (signal or background), its “true” kinematic properties (including 𝑝𝑇  and mass) and
truth constituents (i.e. the simulated particles that formed the jet).

Different variations of the Monte-Carlo samples are used to study the impact of pile-
up and different hyperparameters of the topo-cluster splitting algorithm. Additional

9Not all features are available in all variations; see Section A.
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information about the samples is provided in Section B; a complete list of available
features is given in Section A.

Except where otherwise noted, a dataset of 200 000 jets is considered, comprised of signal,
background, or equal proportions thereof. This suffices to reduce statistical fluctuations
to a negligible level for the purposes of this analysis while keeping computation times
reasonable. It will be indicated whether 𝑊 ′, 𝑍′ and/or background events are considered.

metadata
is_signal , eventNumber , runNumber , …

jet {splitting enabled/disabled}
𝜏1, 𝜏2, 𝜏3, ECF1, ECF2, ECF3

{Cal / Raw / Area}
𝜂, 𝜙, 𝐸, 𝑝𝑇 , 𝑚

truthJet
𝜂, 𝜙, 𝐸, 𝑝𝑇 , 𝑚

⋯ truthConstit
𝜂, 𝜙, 𝐸

⋯

⋯

cluster {splitting enabled/disabled}
𝜂, 𝜙, 𝐸, 𝑝𝑇

⋯ cell
𝜂, 𝜙, 𝐸, 𝜍, 𝑡, sampling

⋯

⋯

Figure 18:  Schematic representation of the data model for the Monte-Carlo samples
considered in this analysis. Variations that contain the same data types are indicated

with curly braces (e.g. {splitting enabled/disabled} ).
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3.3 Jet-Level Features and Substructure
To put the following studies on topo-cluster splitting into context and to obtain a baseline
for comparison, other influences on jet-level features are examined first, including the
jet transverse momentum (𝑝𝑇 ) and pile-up conditions. Then, the effect of completely
disabling topo-cluster splitting on jet features is investigated.

3.3.1 Baseline Reconstruction Performance

Figure 19 shows the 𝑁 -subjettiness ratios 𝜏 truth
21  and 𝜏 truth

32  (defined in Section 2.2.1) for
𝑊 ′ and 𝑍′ signal events with the background overlaid. As expected, 𝑊 ′ events tend
to have lower 𝜏 truth

21  values, coinciding with their 2-prong decay topology. Similarly, 𝑍′

events tend to have lower 𝜏 truth
32  values, as they originate from 3-prong decays. In the

aforementioned cases, the background distribution peaks at higher values of the respective
variable, indicating that these variables are effective at discriminating 𝑊 ′ and 𝑍′ events
from the background.

Figure 20 shows distributions of the same variables reconstructed from detector-level
information. The distributions are less distinguishable from each other and from the
background than with truth-level information, especially those of 𝜏 reco

32 . In contrast to
Figure 19, peaks with values close to 0 are observed, corresponding to jets with few
constituents, as can be seen in Figure 21.

Figure 19:  Histograms of 𝜏 truth
21  and 𝜏 truth

32  for 𝑊 ′ and 𝑍′ signal / background events.

Figure 20:  Histograms of 𝜏 reco
21  and 𝜏 reco

32  for 𝑊 ′ and 𝑍′ signal / background events.
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Figure 21:  Histograms of the number of topo-clusters for jets with small 𝜏 reco
21  resp. 𝜏 reco

32
versus all jets. (𝑊 ′ + bkg)

Like 𝜏21, 𝐷2 is sensitive to the two-prong substructure of jets originating from 𝑊 ′ decays.
Figure 22 shows that it is not bound to the [0, 1] range and has similar overlap between
signal and background as 𝜏21 at both truth and reconstruction level. It is to be noted that
a small fraction of infinite values is excluded from all histograms involving 𝐷2.

Figure 22:  Histograms of 𝐷truth
2  and 𝐷reco

2  for 𝑊 ′ and 𝑍′ signal / background events.

In Figure 23, three examples of jets with high and low 𝜏 truth
21  are given, sampled at different

quantiles of the 𝜏21 distribution. They are equally scaled to allow for visual comparison.
The left and center examples show two high-density regions in close proximity, whereas
the right one has a single high-density region.

Figure 24 shows similar examples for 𝐷truth
2 . The left one shows a jet with two well-

separated subjets, the middle one shows two subjets in close proximity, and the right one
has three subjets. This exemplifies the fact that high values of 𝐷truth

2  occur both for jets
with a different number of prongs than three and for jets with no discernible substructure.
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Figure 23:  Scatterplots of the truth constituents of three jets at different quantiles
of the 𝜏 truth

21  distribution. The ✕ markers are scaled and colored according to their
respective energy (larger and darker means higher energy). (𝑊 ′ + bkg)

Figure 24:  Scatterplots of the truth constituents of three jets at different quantiles of
the 𝐷truth

2  distribution. (𝑊 ′ + bkg)

An overview of the discrimination power of the previously discussed variables is given in
Figure 25, which shows ROC curves for the 𝑊 ′/background classification task using cuts
on 𝜏21, 𝜏32, and 𝐷2 on either truth or reconstruction level. While the performance of 𝜏21
and 𝐷2 is similar, 𝜏32 is significantly less effective, due to being designed for three-prong
rather than two-prong substructure. On 𝑍′/background samples, shown in Figure 26,
𝜏 truth
32  outperforms all other variables by a large margin. At reconstruction level, however,

its performance is degraded enough to be worse than that of 𝜏 reco
21  and 𝐷reco

2 .
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Figure 25:  ROC curves for different substructure variables
on truth and reconstruction level. (𝑊 ′ + bkg)

Figure 26:  ROC curves for different substructure variables
on truth and reconstruction level. (𝑍′ + bkg)
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3.3.2 Dependence on 𝑝𝑇

As outlined in Section 2, jets with larger 𝑝𝑇  become more collimated, making it harder
to resolve their substructure. This effect is studied here by comparing the distributions
of 𝜏21 and 𝜏32 at at low and high 𝑝truth

𝑇 , as well as the corresponding ROC curves.

Figure 27 shows that there is little effect of 𝑝truth
𝑇  on the truth-level 𝜏 truth

21  distributions.
The reconstructed 𝜏 reco

21  distributions in Figure 28 show a more pronounced shift towards
lower values for both signal and background at high 𝑝truth

𝑇 . In particular, the fraction of
jets with 𝜏 reco

21 ≈ 0 increases sharply. As the background distribution is equally affected,
this constitutes a loss of discriminating power.

Figure 27:  Histogram of 𝜏 truth
21  for high and low 𝑝truth

𝑇 . Each of the four distributions is
normalized to unit area. (𝑊 ′ + bkg)

Figure 28:  Histogram of 𝜏 reco
21  for high and low 𝑝truth

𝑇 . (𝑊 ′ + bkg)

In contrast to 𝜏21, 𝐷truth
2  in Figure 29 is affected by 𝑝truth

𝑇  differently for signal and
background. While the background is slightly shifted towards lower values at high
𝑝truth

𝑇 , the signal distribution is shifted towards higher values, leading to an increased
separation between the two. The reconstructed 𝐷reco

2  distributions in Figure 30 show a
more pronounced shift toward higher values at high 𝑝truth

𝑇  for signal. As with 𝜏 reco
21 , a peak

at 𝐷reco
2 ≈ 0 appears, but it is dominated by background instead of signal.
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Figure 29:  Histogram of 𝐷truth
2  for three 𝑝truth

𝑇  ranges. (𝑍′ + bkg)

Figure 30:  Histogram of 𝐷reco
2  for three 𝑝truth

𝑇  ranges. (𝑍′ + bkg)

In Figure 31, the changes to truth-level 𝜏32 distributions with 𝑝truth
𝑇  are shown. While

the background distribution again remains largely unchanged, the mode of the signal
distribution shifts from ≈ 0.8 to ≈ 0.5, possibly due to increased collimation.

Figure 31:  Histogram of 𝜏 truth
32  for three 𝑝truth

𝑇  ranges. (𝑍′ + bkg)
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Figure 32:  Histogram of 𝜏 reco
32  for three 𝑝truth

𝑇  ranges. (𝑍′ + bkg)

As reasoned above, the ROC curves in Figure 33 show a decrease in performance at
high 𝑝truth

𝑇  for both 𝜏21 and 𝜏32. It is intuitively clear that this is due to the increased
collimation of jets at high 𝑝𝑇 , making it harder to resolve their substructure. 𝐷2 shows
a slight increase in ROC-AUC at high 𝑝truth

𝑇 , due to changes in the signal distribution
outlined above.

Figure 33:  ROC curves for different substructure variables
on truth and reconstruction level. (𝑍′ + bkg)
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3.3.3 Dependence on Pile-Up

The previous comparisons were performed on samples with realistic pile-up conditions.
To isolate the effect of pile-up on jet substructure variables, these baseline samples are
compared to equivalent samples without pile-up.

Qualitatively, the removal of pile-up is expected to improve the resolution of jet substruc-
ture variables. Indeed, for all three considered variables, a shift towards lower values is
observed that is larger for signal than for background, as shown in Figure 34. Truth-level
variables are unaffected by pile-up by design and not presented here.

Figure 34:  Histograms of 𝜏 reco
21 , 𝜏 reco

32 , and 𝐷reco
2  with and without pile-up. (𝑊 ′ + bkg)

Figure 35 compares the ROC curves of the substructure variables with and without pile-
up for the 𝑊 ′ + bkg samples. As was shown in Figure 25, 𝜏 reco

21  and 𝐷reco
2  have similar

performance, while 𝜏 reco
32  is not suitable for 2-prong jets. Pile-up degrades the performance

of all three variables, but only by a small amount. In Figure 36, 𝜏32 is again outperformed
by 𝐷2, but 𝐷2 gains discriminating power with pile-up. This might be due to it being used
“the wrong way”, i.e. to tag 3-prong instead of 2-prong jets, while still outperforming the
other variables, as the classification task at hand is only between ≥1-prong signal and 1-
prong background.
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Figure 35:  ROC curves for various substructure variables,
with and without pile-up. (𝑊 ′ + bkg)

Figure 36:  ROC curves for various substructure variables,
with and without pile-up. (𝑍′ + bkg)
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3.3.4 Dependence on Topo-Cluster Splitting

The most evident impact of topo-cluster splitting (described in Section 2.1.3) is in the
number of clusters per jet, histogrammized in Figure 37. With splitting, the mean number
of clusters per jet increases from 2.169 to 12.468. A per-jet comparison in Figure 38 shows
that this increase is not simply proportional to the original number of clusters. While
almost always matching or exceeding the original number of clusters,10 the number of
clusters with splitting enabled is largely independent of the original number of clusters.
Without splitting, many jets contain only a single cluster, which is detrimental to the
discriminative power of substructure variables, as they require at least two constituents
to be meaningful. This can be seen in Figure 39: Both 𝜏21 and 𝜏32 collapse towards 0
without splitting, while with splitting, the distributions are much closer to the truth-level
ones. Accordingly, the ROC curves in Figure 40 are close to random guessing without
splitting. The reconstruction error of the jet axis, as measured by the Δ𝑅 between truth
and reconstructed jets, is not affected by the splitting, while the jet energy tends to be
underestimated without splitting, as shown in Figure 41.

Figure 37:  Distribution of the number of clusters per jet with splitting enabled/
disabled. (𝑊 ′ + bkg)

Figure 38:  2D Distribution of the number of clusters with splitting enabled/disabled.
(𝑊 ′ + bkg)

10The few exceptions, located below the identity line in the figure, are presumably the result of trimming.
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Figure 39:  Histograms of 𝜏21 and 𝜏32 of signal events with topo-cluster splitting
enabled / disabled, compared to the truth-level distributions. (𝑊 ′)

Figure 40:  Comparison of ROC curves for substructure variables with and without
topo-cluster splitting. (𝑊 ′ + bkg)

Figure 41:  Comparison of jet energy and angular resolution with splitting enabled/
disabled. (𝑊 ′ + bkg)

ANALYSIS 37



3.3.5 Upper Limit on Performance with Binary Splitting

The given data only contains jet-level variables either with topo-cluster splitting enabled
or with topo-cluster splitting disabled.¹¹ Without modifications to the clustering algo-
rithm itself, which are outside the scope of this thesis, only these two extreme cases can
be studied here.

A hypothetical algorithm operating on the given data could decide for each jet whether to
return the jets/variables that were obtained with splitting enabled or disabled. An upper
limit on the performance gain achievable by such an algorithm can be obtained by always
choosing the better option for each jet using Monte-Carlo truth information.

Figure 42 shows the distribution of the 𝜏21 and 𝜏32 substructure variables with splitting
enabled, disabled, and the hypothetical best-of-both. It can be seen that while disabled
splitting yields significantly higher errors, the best-of-both approach only improves slightly
upon always choosing to enable splitting. In fact, on a per-jet basis, only 8 % of jets would
benefit from having splitting disabled instead of enabled in the case of 𝜏21, 4.55 % in the
case of 𝐷2, and 3.17 % for 𝜏32. It is to be noted that this is an extreme case, meaning that
algorithms that actually modify the splitting behavior beyond a binary decision could
achieve much higher performance gains.

Figure 42:  Distributions of the absolute error (compared to Monte-Carlo truth)
for splitting enabled, disabled, and the hypothetical best-of-both. (𝑍′ + bkg)

¹¹Outputs for variations of the splitting algorithm are used in a grid search for hyperparameter
optimization, but each sample corresponding to a hyperparameter set contains distinct events. Hence, no
direct comparison is possible.
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3.3.6 Number of Constituents

Figure 43 shows a 2D density plot comparing the number of reconstructed constituents
(i.e. topo-clusters) to the number of truth constituents. Evidently, the number of truth
constituents is substantially higher than the number of reconstructed constituents; almost
all events are below the identity line (gray dashed), hinting at the lossy nature of the
reconstruction process. Though the distributions (or rather the areas they cover) are
similar for signal and background events, the signal events tend to have more truth- and
– proportionally – more reconstructed constituents. Figure 44 shows the same for 𝑊 ′

signal events; in this case, the difference between signal and background is less pronounced.
This difference in the number of constituents can be attributed at least partially to the
different decay topologies of 𝑊 ′ and 𝑍′ bosons (2-prong vs. 3-prong decays).

Figure 43:  2D density plot of the number of reconstructed constituents vs. the
number of truth constituents. As with topographical maps, lines connect points of equal

density; areas surrounded by more lines are denser. The dashed line represents the
identity, where the number of reconstructed constituents equals the number of truth

constituents. (𝑍′ + bkg)

Figure 44:  2D density plot of the number of reconstructed constituents vs. the number
of truth constituents. (𝑊 ′ + bkg)
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3.4 Cluster-Level Features
Having studied the jet-level substructure variables, the next step is to investigate features
describing the individual clusters within the jets. Contrary to the previous studies, no
additional samples are available to study the impact of pile-up. Furthermore, while some
truth information is available at the cluster level, there is typically no corresponding
reconstructed quantity. The focus will thus be on the dependence of cluster-level features
on 𝑝𝑇  and the number of clusters per jet. Impacts of topo-cluster splitting are examined
using more complex methods and will be discussed in Section 3.5.

In order to reason about one-dimensional distributions of cluster-level features, the
features need to be aggregated first, so that a cluster-level feature is described by a single
scalar per jet. This can be done in various ways, e.g. by taking the mean or median,
minimum or maximum, sum, etc. Alternatively, the features of all clusters in a jet can be
concatenated (flattened), yielding ∑𝑗∈ jets 𝑛clus,𝑗 instead of 𝑛jets values. As the choice of
aggregation method can have a significant impact on the resulting distributions, it will
be specified in all following plots.

3.4.1 Dependence on 𝑝𝑇

Because of the large number of cluster-level variables available, an EMD-based comparison
(see Section 3.1.1) is performed to find the variables most (and least) affected by changes
in 𝑝𝑇 . Variables in this subsection are concatenated before EMD calculation.

A distinction needs to be made between the 𝑝𝑇  of a whole jet and the 𝑝𝑇  of individual
clusters within. Results of a comparison based on the former are given in Table 1.
They indicate increased significances for the overall cluster ( SIGNIFICANCE ) and for
the dominant cell within a cluster ( CELL_SIGNIFICANCE ), as well as increased mass and
energy. Even though higher-𝑝𝑇  should penetrate deeper into the calorimeter, the average
cartesian distance of a cluster from the nominal vertex ( CENTER_MAG ) decreases with
increasing jet 𝑝𝑇 , presumably because of the parallel decrease in |𝜂| combined with the
barrel geometry of the calorimeter. Meanwhile, Table 2 shows that high-𝑝𝑇  clusters tend
to contain a significantly larger fraction of the jet’s energy ( fracE ) and are more likely
to be surrounded by other clusters (lower ISOLATION ; defined in [7]).

As features of particular interest for later investigations, fracE  and the number of cells
per cluster are also given as histograms in Figure 45 and Figure 46, respectively.

Section A.2 in the appendix lists all cluster-level variables used in this work along with
their definitions and descriptions. Complete tables of EMD results for all variables are
available in Section F.
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Table 1:  Normalized EMDs between cluster-level variables
with high/low 𝑝𝑇

truth
jet . (𝑊 ′ + bkg)

variable unit EMD mean
(𝑝𝑇

truth
jet < 800 GeV)

mean
(𝑝𝑇

truth
jet > 2 000 GeV)

CENTER_MAG mm 0.594 2897.664 2352.156
CELL_SIGNIFICANCE 0.566 54.704 340.264
MASS GeV 0.558 1198.655 13 324.379
ENG_CALIB_TOT GeV 0.551 28.808 310.518
SIGNIFICANCE 0.548 27.426 161.036

Table 2:  Normalized EMDs between cluster-level variables
with high/low 𝑝𝑇

reco
cluster. (𝑊 ′ + bkg)

variable unit EMD mean
(𝑝𝑇

reco
cluster < 1 GeV)

mean
(𝑝𝑇

reco
cluster > 40 GeV)

ENG_CALIB_OUT_L GeV 1.673 0.113 5.796
ENG_CALIB_OUT_T GeV 1.377 0.252 2.298
fracE 1.224 0.000 0.279
ISOLATION 1.208 0.660 0.326
LATERAL 1.206 0.483 0.859

Figure 45:  Histogram of the fraction of jet energy contained in a cluster
for high and low 𝑝𝑇

truth
jet . Each of the four distributions is normalized to unit area.

(𝑊 ′ + bkg)

Figure 46:  Histogram of the number of cells in a cluster
for high and low 𝑝𝑇

truth
jet . (𝑊 ′ + bkg)
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3.4.2 Dependence on 𝑁cluster

Another dependency to consider is that on the number of clusters per jet, 𝑛clus. It is
largely independent of the jet’s 𝑝𝑇 , The distributions of cluster-level features for high
and low 𝑛clus are compared in Table 3. Unsurprisingly, the fraction of jet energy per
cluster ( fracE ) decreases with many clusters. The same can be said about the mass per
cluster ( MASS ), decreasing nearly 10-fold. The cluster’s distance from the nominal vertex
( CENTER_MAG ) increases; showers that penetrate deeper into the calorimeter tend to form
more clusters.

Table 3:  Normalized EMDs between cluster-level variables
for jets with high/low number of clusters. (𝑍′ + bkg)

variable unit EMD mean
(𝑛clus ≤ 8)

mean
(𝑛clus ≥ 40)

ENG_CALIB_OUT_T GeV 1.189 1.653 0.825
CENTER_MAG mm 0.768 2401.060 3161.950
fracE_ref 0.766 0.150 0.016
fracE 0.764 0.179 0.021
MASS GeV 0.709 14 230.989 1560.402

As can be seen in Figure 47, the distribution of the first 𝜂 moment of clusters shows
pronounced peaks at 𝜂 ≈ ±1.4, for jets with a high number of clusters, coinciding with
the transition region between the barrel and endcap calorimeters (see Figure 4). This
underscores the influence of detector geometry on cluster formation and gives an example
of underlying correlations that may affect the following analyses.

Figure 47:  Distribution of the first 𝜂 moment of clusters,
for different numbers of clusters per jet.
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3.5 Comparison of Split and Non-Split Clusters
After considering the impact of topo-cluster splitting on jet-level variables in Section 3.3.4,
in this section, the effect of topo-cluster splitting on cluster-level variables is studied. For
this, two distinct aspects can be considered: On one hand, the distributions of any variable
with topo-cluster splitting enabled/disabled can be compared. On the other hand, the
distributions of cluster-level variables can be compared for clusters that have or have not
been split by the algorithm. The latter approach gives insights into the “decision” of the
algorithm, but requires a matching of split and non-split clusters because information
about them is stored separately (see Section 3.2.1). Both approaches are pursued in the
following.

3.5.1 Splitting Enabled/Disabled

The most different cluster-level variables with/without topo-cluster splitting are those
directly related to the cluster size and shape, as shown in Table 4.
As the average size of clusters decreases with splitting, so do the number of cells with
positive / arbitrary energies in a cluster ( nCells  / nCells_tot ) and fraction of 𝐸truth

jet
contained in the cluster ( fracE<Calib>_ref ). The truth-level energy deposited in the
calorimeter, but outside of the associated cluster ( ENG_CALIB_OUT_L )¹², is also expected to
scale inversely with the number of clusters, but highlights the negative impact of disabling
splitting on the energy resolution.

Table 4:  Normalized EMDs between cluster-level variables with and without topo-
cluster splitting enabled. See Table A13 for all variables.

variable unit EMD mean
(no splitting)

mean
(splitting)

nCells_tot 1.480 701.013 137.022
nCells 1.460 539.010 106.664
fracECalib_ref 1.363 0.443 0.077
ENG_CALIB_OUT_L GeV 1.358 11.535 1.998
fracE_ref 1.356 0.385 0.065

3.5.2 Matching Split Clusters to Non-Split Clusters

As motivated before, the comparison of topo-clusters that were and were not split by
the algorithm requires a matching of split clusters to their respective non-split clusters.
For clarity, the terms “pre-splitting” and “post-splitting” will be used to refer to clusters
obtained with the splitting algorithm disabled / enabled, respectively. This is to distin-
guish them from “split” and “non-split” clusters, which shall refer to a post-splitting
clusters’ intrinsic property of having been split or not. A set-theoretic approach to this
problem is given below:

For brevity, let 𝑛pre / 𝑛post be the number of clusters in a jet pre- / post-splitting. Note
that post-splitting does not imply that all clusters were actually split, but 𝑛pre ≤ 𝑛post
should always hold. Let 𝑋pre,𝑖 / 𝑋post,𝑗 be the set of (fully identifying) cell coordinates

¹² _L  stands for “loose” matching, i.e. Δ𝛼 = 1.0. See CaloClusterMoment.h  in [74].
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(𝜑, 𝜂, sampling) in pre- / post-splitting clusters 𝑖 / 𝑗. Then, three cases of matching can
be distinguished:
• If 𝑋pre,𝑖 ∩ 𝑋post,𝑗 = ∅, there is no match.
• If 𝑋pre,𝑖 ⊇ 𝑋post,𝑗, there is a (perfect) match.
• Else, if 𝑋pre,𝑖 ∩ 𝑋post,𝑗 ≠ ∅, there is a partial match. This is a theoretical possibility

only; it does not occur in the present samples.

Finally, 𝑚𝑖 (𝑖 ∈ [1, …, 𝑛pre]) is the number of post-splitting clusters that were matched
to the 𝑖-th pre-splitting cluster according to the above definition. It can be 0 (no match),
1 (perfect match) or >1 (split). Based on the idea that topo-cluster splitting should not
change the overall content of a jet,

(
(( ⋃

𝑛post

𝑋post
)
)) ⊆

(
((⋃

𝑛pre

𝑋pre
)
)) (20)

and 𝑚𝑖 ≥ 1∀𝑖 should hold true.

However, both conditions are found to be violated in some cases. Examples of this are
shown in Figure 48: New clusters appear to be created that do not match any pre-splitting
cluster, while some sections of pre-splitting clusters do not match any post-splitting
cluster. Though no reason for this behavior is demonstratably identified, it is assumed to
be the result of trimming (see Section 2.1.7 and Figure 48) that was applied independently
to the jets with and without splitting enabled.

Figure 48:  Two examples of jets with a mismatch between split and non-split clusters.
Gray cells are present in both pre- and post-splitting clusters, while red / green cells

are only present in pre- / post-splitting clusters, respectively.

A histogram of 𝑚𝑖, given in Figure 49, shows that most pre-splitting clusters are matched
to exactly one post-splitting cluster, indicating that they were not split by the algorithm.
Values of 𝑚𝑖 > 1, accounting for 44.51 % of all pre-splitting clusters, indicate that the
respective pre-splitting cluster was split into 𝑚𝑖 clusters. Values of 𝑚𝑖 = 0, indicate that
the respective pre-splitting cluster was not matched to any post-splitting cluster. This
applies to about 7.17 %.
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Figure 49:  Histogram of the number 𝑚𝑖 of matched split clusters
per pre-splitting cluster. (𝑍′ + bkg)

3.5.3 Matching-Based Comparisons

To evaluate the correctness of the matching procedure, the number of clusters post-
splitting 𝑛post is compared to the sum of the number of matched split clusters per pre-
splitting cluster ∑𝑖 𝑚𝑖 in Figure 50. If the matching worked perfectly, these two numbers
would be equal for each jet, and the two distributions would be identical. However, it
is observed that 𝑛post tends to be larger than ∑𝑖 𝑚𝑖, again indicating that some split
clusters are not matched to any non-split cluster, presumably due to the aforementioned
grooming algorithm.

Figure 50:  Histograms of the number of clusters per jet with splitting enabled 𝑛post
and the sum of the number of matched split clusters per pre-splitting cluster ∑𝑖 𝑚𝑖.

(𝑍′ + bkg)
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With the aforementioned issues in mind, a comparison of cluster-level features is
performed between clusters that were or were not split, as indicated by 𝑚𝑖 = 1 and 𝑚𝑖 ≥ 2,
respectively. The largest resulting normalized EMDs are shown in Table 5. Similarly to
Section 3.5.1, the largest differences are observed in features that scale with the cluster
size, such as fracE  and sumCellE , the sum of positive EM-scale cell energies in the
cluster. SECOND_LAMBDA ¹³ is also increased approximately 30-fold, indicating that non-
split clusters tend to be more elongated in the direction of their principal axis.

Table 5:  Normalized EMDs between cluster-level variables for non-split clusters
matching 1 or ≥ 2 split clusters.

variable unit EMD mean
(𝑚𝑖 = 1)

mean
(𝑚𝑖 ≥ 2)

fracE 1.885 0.013 0.924
fracE_ref 1.882 0.011 0.779
SECOND_LAMBDA mm² 1.552 16 065.308 452 754.603
ENG_POS GeV 1.526 16 259.747 1 744 003.767
sumCellE GeV 1.526 16.231 1743.671

As cluster-level variable with the largest EMD, the fraction of jet energy contained
in a given cluster frac_E  is shown as a histogram in Figure 51. Note that only the
singular value pre-splitting is considered here. Sharp peaks are visible at 0 % and 100 %,
corresponding to clusters that contain none or all of the jet energy, respectively. Although
clusters that were not split tend to contain very little of the jet energy, there are also some
clusters that nearly contain the entirety of it. The sparse interim region proves again that
many jets contain only a single cluster without splitting.

Figure 51:  Clusters containing a large fraction of the overall energy tend to be split.
A symlog scale is used to make interim values visible. (𝑍′ + bkg)

Besides comparisons of clusters that were or were not split, it is also possible to compare
the features of split clusters to those of their non-split counterparts. Because this is a one-
to-many relationship, 2D histograms are used to visualize these comparisons. Each value
on the x-axis corresponds to a cluster before splitting, while the y-axis shows the values
of all matched split clusters.

¹³ SECOND_LAMBDA  is the second moment of 𝜆, i.e. ⟨𝜆2⟩, where 𝜆 are the distances of cells from cluster
center along the principal axis. See [7] for a detailed definition.
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Figure 52 proves that split clusters always have less total energy than the non-split
clusters, as expected. Beyond this trivial observation, the energy after splitting does not
increase with the energy before splitting; instead, it is distributed over a larger number
of clusters. In Figure 53, the points (0, 0) and (1, 1) are most prominent, corresponding
to clusters that are either fully contained in the electromagnetic calorimeter or have no
energy in it at all, both before and after splitting. Additional regions of high density are
visible at the top and bottom around 𝑥 = 0.6, meaning that split cluster are significantly
more likely to be fully or not at all contained in the EM calorimeter. The diagonal
corresponds to clusters that are not split.

Figure 52:  2D histogram of the total energy of clusters before splitting
vs. all matching split clusters. (𝑍′ + bkg)

Figure 53:  2D histogram of the fraction of energy contained in the EM calorimeter
before splitting vs. all matching split clusters. (𝑍′ + bkg)

ANALYSIS 47



3.6 Cell-Level Studies
Although topo-cluster splitting does not directly affect cell-level variables (apart from the
weight of border cells, which is not present in the given data), they in turn affect the
splitting algorithm, for example due to the 500 MeV threshold that defines local maxima
(see Section 2.1.3). As building blocks of clusters, fundamental properties of cells within
clusters are studied in the following.

Figure 54 shows that the vast majority of cells has miniscule energy deposits relative
to the cluster’s maximum, resulting in a peak near zero. A second peak is visible near
100 %, corresponding to the highest-energy cells in each cluster. The left tail of the
graph corresponding to negative cell energies extends beyond − 100 %. This region covers
clusters that are dominated by cells with negative energy deposits. 0.81 % of all clusters
satisfy this condition. Topo-clusters with negative overall energy are not part of the
sample at hand; consequently, the fraction of clusters with negative-energy cells is lower
than in reality.

Figure 54:  Distribution of cell energy deposit relative to the maximum energy deposit
in the cluster. (𝑊 ′ + bkg)

Figure 55 and Figure 56 show the relationship between the second-highest cell energy
in a cluster and the number of cells in that cluster, with splitting disabled and enabled,
respectively. The second-highest cell energy is chosen because it relates to the 500 MeV
threshold for splitting, indicated by a dashed line in both figures. Stripes for low numbers
of cells are visible due to the logarithmic binning of the histogram. When splitting is
disabled, two regions of high density are visible: One at lower cell energies in the order
of hundreds of MeV, and one at higher cell energies in the order of tens of GeV. Due to
the lower number of clusters without splitting, less statistics are available, as can be seen
by comparing the color scales. With splitting, the overall distribution is more uniform, as
maxima from more clusters are considered, while each maximum is less likely to be very
high in energy. A cut becomes visible near the 500 MeV threshold, as expected. All cells
to the right of this line belong to clusters that were not split, even though they contained
at least two cells above the threshold. This is due to the additional conditions for splitting
(see Section 2.1.3).
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Figure 55:  2D Histogram of the second-highest cell energy in a cluster vs. the number
of cells in that cluster, with splitting disabled. A dashed line indicates the 500 MeV

threshold for splitting.

Figure 56:  2D Histogram of the second-highest cell energy in a cluster vs. the number
of cells in that cluster, with splitting enabled.
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3.7 Agreement of Clusters with Truth Constituents
One aspect to consider when judging the impact of topo-cluster splitting is how the
distribution of simulated shower particles (truth constituents) relates to the distribution
of cell signals, or rather, clusters. If clusters were often split in a way that some of the
resulting clusters do not contain any truth constituents, this would be a sign of deficiency
of the splitting algorithm.

The underlying question of whether a truth constituent belongs to a cluster is not
unambiguous, though, because clusters are observed only via their member cells, each
represented as a point in the present samples (see Section A).14 Since the truth constituent
data does not include any information about sampling (/ depth with respect to the beam
axis), the problem is reduced to two dimensions, namely the (𝜂, 𝜙) plane. Obtaining the
actual shape of individual cells based on their center coordinates is not feasible in this
analysis, as it would require setting up Athena and modifying the reconstruction chain
to store this information.

Most basic solutions would require a grid of cells that is equidistant, which is not the case
in the ATLAS calorimeter, especially throughout sampling layers. Therefore, two more
complex solutions were considered: A convex hull approach that can adapt to the shape
of the cluster, and a “pitch-aware” nearest-neighbor search that takes into account the
varying cell density, both of which are described in the following sections.

3.7.1 Option 1: Convex Hulls

A fully cell-layout-independent method is to use a convex hull around the cells of a cluster.
Convex hulls are a way to define a boundary around a set of points in space. Convexity
means that for any two points within the boundary, the straight line connecting them
is also entirely within the boundary. Imposing this constraint gives a well-defined and
computationally efficient way to create a boundary, compared to more general shapes
that could be concave or have holes.

Generating convex hulls is computationally more expensive than preparing an optimized
nearest-neighbor search and non-trivial to parallelize, but still sufficient for offline
analysis, as the results for a given dataset can be cached. The implementation
scipy.spatial.ConvexHull  from [59] is used for this purpose.

One drawback of requiring convexity is that it does not always fit the shape of a cluster
well. To give an example, a cluster with a half-moon shape would not be well represented
by a convex hull, as the hull would include the empty space between the two outer ends
of the half-moon. Similarly, outliers may dictate the shape of the hull. As a result, convex
hulls would tend to overestimate the area covered by a cluster, thus overestimating the
number of truth constituents contained therein. As a countermeasure, the cells used for

14It can be argued that this ambiguity is related to the “coastline paradox” in geography, where the
length of a coastline depends on the resolution of the measurement. In the present case, the “coastline”
is the boundary of a cluster, and its shape depends on the choice of cells used to define it. This is further
complicated by the fact that clusters are not necessarily convex, which means that the boundary can
take on complex shapes.
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construction of the convex hull are restricted to those with sufficient energy deposit.
Motivated by the typical energy distribution of cells within a cluster (see Figure 54), the
70 % quantile of the cell energy deposit was found to be a functional lower threshold for
this purpose.

Another issue arises for small clusters with very few cells. If all cells of a cluster are
collinear (i.e. lie on a straight line), the convex hull does not enclose any area and is thus
not defined. Those cases are treated by setting the number of matching truth constituents
to -1 .

Figure 57 shows an example of a convex hull. Notably, there are some cells that are not
part of the hull; they are barely visible due to their low energies.

Figure 57:  Example of a convex hull. The ✕ markers denoting truth constituents are
colored based on whether they are part of the hull or not. The cells of a single cluster

are shown as circles, with their size proportional to their energy deposit.
The convex hull is represented by a blue surface.

3.7.2 Option 2: “Pitch-Aware” Matching

As discussed before, a basic nearest-neighbor search is not feasible due to the inhomo-
geneous cell layout (shown in Figure 58). This becomes evident when considering a
subsection of calorimeter cells in a (𝜙, 𝜂) region, shown in Figure 58: Without knowledge
of the sampling layer, it is not possible to determine the typical cell spacing (pitch),
as it varies significantly between layers. Even within a sampling layer, pitches are not
entirely uniform. They are not only different for 𝜂 and 𝜙 (especially in the strip layers),
but also vary within layer and direction, as exemplified in Figure 59 for sampling layer 5.
Therefore, distance thresholds per sampling layer and coordinate direction are obtained
from the 90-percentile of all corresponding individual cell pitches. The complete table of
obtained pitches is given in Table A9. They will be referred to as thresholds 𝑡𝜂,𝑠 and 𝑡𝜙,𝑠
in the following.
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A truth constituent is considered part of a cluster if it is within 𝑡𝜂,𝑠 in 𝜂 and 𝑡𝜙,𝑠 in 𝜙 of
any cell of the cluster, where 𝑡𝜂,𝑠 and 𝑡𝜙,𝑠 correspond to the sampling layer 𝑠 of that cell:15

|Δ𝜂| < 𝑡𝜂,𝑠 ∧ |Δ𝜙| < 𝑡𝜙,𝑠. (21)

Figure 58:  Layout of calorimeter cells in a (𝜙, 𝜂) subsection, colored by sampling layer.
Differences in pitch between layers are clearly visible. For example, ■ EMB1 (index 1)

has a strip geometry and is dense in 𝜂, and a “seam” at 𝜂 = 0 (see Figure 4).

Figure 59:  Histogram of pitches Δ𝜂 of cells in sampling layer 5.

15After scaling by the thresholds, this is the Chebyshev distance / maximum metric.
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3.7.3 Results

Figure 60 and Figure 61 show the distributions of the number of truth constituents
contained in clusters, as determined by the convex hull and pitch-aware methods, respec-
tively. While the distributions are similar towards higher numbers of truth constituents,
the behavior up to about 10 truth constituents is different: The convex hull method shows
a significant number of clusters with -1  truth constituents, emphasizing the drawback
of undefined convex hulls for small clusters with very few cells. Both methods show a
significant number of clusters with zero truth constituents, presumably due to noise from
pile-up. The effect might be amplified by the fact that charged truth constituents’ tracks
are bent in the magnetic field, which cannot be accounted for with 2D information alone.

Figure 60:  Histogram of the number of truth constituents contained in the convex hull
of a cluster. Note: The 𝑥 axis is symlog-scaled to allow for -1  to be shown. (𝑍′ + bkg)

Figure 61:  Histogram of the number of truth constituents matched via pitch-aware
nearest-neighbor search. (𝑍′ + bkg)

Figure 62 shows the correlation between the fraction of truth constituents that do not
match any cluster and the reconstruction error of 𝜏21 as an exemplary cluster variable.
A weak correlation is observed, indicating that – counterintuitively – jets with many
unmatched truth constituents tend to have a lower reconstruction error of 𝜏21. This might
be due to untreated correlations, as 𝜏21 is calculated from the leading two clusters in a jet,
which might still be well reconstructed even if many truth constituents are unmatched.
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Figure 62:  𝜏21 reconstruction error vs. fraction of truth constituents not matched to
any cluster. (convex hull method) (𝑍′ + bkg)

Table 6 gives an overview of cluster-level variables that differ the most between clusters
with few (𝑁matching ≤ 5) and many (𝑁matching ≥ 20) truth constituents contained therein,
as determined by the convex hull method. The thresholds were chosen to yield populations
of similar size. As in previous comparisons, the most prominent features are those that
are intuitively correlated with the size of the cluster, such as the fraction of jet energy
contained therein, or the maximum cell significance within the cluster. Additionally, a
~40-fold increase in mass and a ~20-fold increase in cluster-level significance are observed
for clusters with many truth constituents. Results for the alternative pitch-aware method
are shown in Table 7. While overall trends are similar, some additional variables appear
among the leading in terms of EMD differences. For example, clusters matching many
truth constituents tend to be less isolated (lower ISOLATION ), and the effective weights
accounting for out-of-cluster deposits are lower.

Figure 63 shows the distributions underlying the EMD for the (truth-level) energy
deposited in cells outside of the cluster but associated with it, either via the convex hull
or pitch-aware method. This variable is of special interest as it is related to the goal
of quantifying how well clusters capture the energy deposits of particles. Though the
distributions for either method are similar in shape, the pitch-aware method appears to
match more truth constituents on average. Both methods show that clusters with many
truth constituents tend to have more associated out-of-cluster energy deposits, possibly
because of being larger in the first place. This is in line with the observation that clusters
with many truth constituents tend to contain a larger fraction of the jet energy, as
mentioned above.
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Table 6:  Normalized EMDs between 𝑁matching ≤ 5 and 𝑁matching ≥ 20.
(convex hull method)

variable unit EMD mean
(𝑁matching ≤ 5)

mean
(𝑁matching ≥ 20)

ENG_CALIB_OUT_T GeV 2.690 0.604 1.754
ENG_CALIB_OUT_M GeV 1.438 0.544 3.350
ENG_CALIB_OUT_L GeV 1.369 0.571 4.568
fracE 1.272 0.006 0.194
fracE_ref 1.247 0.005 0.158
CELL_SIGNIFICANCE 1.226 18.454 515.279
MASS GeV 1.169 404.816 17 571.809
SIGNIFICANCE 1.166 11.096 235.392
ENG_CALIB_TOT GeV 1.153 8.491 403.457
ENG_POS GeV 1.142 8822.642 387 454.358

Table 7:  Normalized EMDs between 𝑁matching ≤ 5 and 𝑁matching ≥ 20.
(pitch-aware method)

variable unit EMD mean
(𝑁matching ≤ 5)

mean
(𝑁matching ≥ 20)

ENG_CALIB_OUT_T GeV 2.360 0.479 1.449
ENG_CALIB_OUT_L GeV 1.092 0.593 2.926
OOC_WEIGHT 1.079 1.347 1.041
SECOND_LAMBDA mm² 1.070 17 920.171 175 924.693
ENG_CALIB_OUT_M GeV 1.054 0.505 2.275
CELL_SIG_SAMPLING 1.041 1.579 6.936
CENTER_LAMBDA mm 0.972 211.208 802.358
ISOLATION 0.934 0.552 0.304
LATERAL 0.865 0.617 0.862
AVG_TILE_Q 0.851 0.319 14.113

Figure 63:  Histograms of truth-level energy deposited in cells outside of the cluster
but associated with it for clusters with few (𝑁matching ≤ 5) and many (𝑁matching ≥ 20)
truth constituents contained therein, as determined by the convex hull method (left)

and pitch-aware method (right). (𝑍′ + bkg)
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3.8 Variations of Splitting Hyperparameters
As discussed in Section 2.1.3, the topo-cluster splitting algorithm depends on a set of
hyperparameters, most importantly a minimum number of neighbor cells that are part
of the same cluster (default value: 4) as well as an energy threshold for local maxima
(default value: 500 MeV). The paper introducing the algorithm [7] does not provide any
information on how these hyperparameters were chosen or optimized, thereby leaving
their performance impact unspecified and motivating an empirical study.

A basic grid search is performed with 8 additional datasets (listed in Section B) to gauge
the impact of these hyperparameters on the performance of the splitting algorithm. For
each dataset, the performance of substructure variables is evaluated in terms of the area
under the ROC curve (AUC). The datasets are of sufficient size to ensure that statistical
fluctuations are small compared to the observed differences in AUC and too small to be
visible in the ROC curves.

Figure 64 superimposes the ROC curves for all considered substructure variables and
different splitting hyperparameters to give an overview of the results. An example of all
ROC curves for a single substructure variable (𝜏 reco

21 ) is shown in Figure 65. Differences in
the TPR of up to 4 % are observed relative to the default hyperparameters, at medium
FPR values.

Figure 64:  Superimposed ROC curves for all considered substructure variables (color-
coded) and different splitting hyperparameters. (𝑍′ + bkg)
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Figure 65:  ROC curves for 𝜏 reco
21  for different splitting hyperparameters. Residuals

are shown relative to the default hyperparameters; positive residuals indicate better
performance. (𝑍′ + bkg)

The numerical results for 𝑍′/background discrimination are listed in Table 8. The table
is sorted by the mean improvement across all considered substructure variables, reaching
improvements of up to 0.5 % in AUC relative to the default hyperparameters in the case
of an increased energy threshold (550 MeV). However, no single set of hyperparameters
consistently outperforms the others across all substructure variables. Though jet tagging
algorithms can combine the information from different substructure variables, the lack
of a clear overall winner suggests that either the default hyperparameters are already
close to optimal, or more extreme changes to the hyperparameters are required to achieve
meaningful improvements. For 𝑊 ′, the hierarchy of hyperparameter performance is nearly
unchanged, but overall improvements are even smaller. The corresponding results are
listed in Table A17 in the appendix.

Table 8:  Overview of the performance of different splitting hyperparameters in terms of
the AUC of different substructure variables as well as their improvement relative to the

default hyperparameters. (𝑍′ + bkg)
𝐸thresh/ MeV NNthresh AUC(𝜏 reco

21 ) AUC(𝜏 reco
32 ) AUC(𝐷reco

2 ) ΔAUC(𝜏 reco
21 ) ΔAUC(𝜏 reco

32 ) ΔAUC(𝐷reco
2 )⟨ΔAUC⟩

550 4 0.557 0.531 0.656 +0.014 +0.012 −0.010 0.005
550 5 0.552 0.528 0.657 +0.009 +0.009 −0.009 0.003
550 3 0.555 0.523 0.654 +0.012 +0.004 −0.012 0.001
500 4 0.542 0.519 0.667 +0.000 +0.000 +0.000 0.000
500 5 0.541 0.517 0.666 −0.001 −0.001 −0.000 −0.001
500 3 0.541 0.517 0.666 −0.001 −0.001 −0.001 −0.001
450 4 0.526 0.507 0.680 −0.016 −0.011 +0.013 −0.004
450 5 0.524 0.504 0.678 −0.018 −0.014 +0.011 −0.007
450 3 0.524 0.504 0.678 −0.018 −0.014 +0.011 −0.007
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4 Conclusions
This thesis has presented a comprehensive investigation of topo-cluster splitting in the
ATLAS calorimeter and its impact on boosted object identification. Through systematic
analysis of Monte-Carlo simulations featuring top and 𝑊/𝑍 jets alongside QCD dijet
backgrounds, the effects of the splitting algorithm have been examined across multiple
levels of reconstruction detail.

The study has demonstrated that topo-cluster splitting plays a fundamental role in jet
substructure reconstruction. Without splitting, the discriminating power of substructure
variables such as 𝜏21, 𝜏32, and 𝐷2 is severely degraded, confirming that the splitting
procedure is essential for effective boosted object identification. The analysis revealed
significant differences in cluster-level properties between split and non-split configurations
(Section 3.4), with split clusters generally exhibiting more appropriate size distributions
and improved energy resolution for substructure analyses.

Studies at cell-level (Section 3.6) provided insights into the distribution of energy deposits
within clusters, and how these distributions are altered by the splitting process. In
particular, it was demonstrated how the distribution of peak cell energies shifts after
splitting.

Novel methodologies have been developed for this study, including a systematic approach
for comparing split and non-split cluster configurations (Section 3.5), and two matching
algorithms for associating Monte-Carlo truth constituents with reconstructed clusters
(Section 3.7). Though subject to inherent limitations, such as the imperfect association
of clusters before and after splitting due to grooming or the non-trivial shapes that
clusters can take on, correlations have been identified that could inform future algorithm
development.

The binary splitting analysis (Section 3.3.5) established an upper performance limit for a
subclass of potential future algorithms that would make binary split/no-split decisions on
a per-cluster basis. The results indicate that only a small fraction of jets (approximately
8% for 𝜏21 and 3% for 𝜏32) would benefit from disabling splitting entirely, suggesting that
the current default approach of enabling splitting is generally appropriate.

A grid search optimization of two splitting algorithm hyperparameters (Section 3.8)
revealed that while measurable differences exist between parameter choices, the magni-
tude of performance improvements achievable through hyperparameter tuning alone is
limited. The energy threshold for local maxima identification and the minimum number
of neighbor cells both show modest effects on substructure variable performance, with
optimal values varying slightly depending on the specific observable considered.
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The findings of this thesis provide a starting point for future research and algorithm
development. The limited performance gains achievable through optimization of energy
and neighbor thresholds alone (Section 3.8) suggest that more fundamental algorithmic
improvements may be necessary to substantially enhance jet substructure reconstruction.
Other hyperparameters of the splitting algorithm, such as the selection of sampling layers
that provide local maxima, are also worth investigating, as they have been chosen before
the advent of boosted object analyses.

Advanced splitting algorithms that move beyond the binary split/no-split decisions
examined in Section 3.3.5 represent a natural next step. Rather than applying uniform
splitting criteria, future algorithms could implement adaptive strategies that tailor split-
ting behavior to the specific characteristics of individual clusters or the physics context
of particular events. Machine learning approaches could potentially identify optimal
splitting strategies by learning from the relationship between cluster properties and final
reconstruction performance.

The choice of optimization targets also warrants further consideration. From a physics
point of view, splitting should resolve subjets, meaning that e.g. gluon-initiated 1-prong
jets should not be split excessively. The specific number of clusters that should be formed
per jet, however, is not well-defined. Different physics scenarios and algorithms may
require different levels of granularity for optimal performance. A middle ground must
be found between “under-splitting”, which could obscure important substructure details,
and “over-splitting”, increasing noise and complicating reconstruction.

One approach explored in this thesis is to optimize splitting algorithms based on their
alignment with Monte-Carlo truth constituents (Section 3.7). This strategy provides a
benchmark that is not directly tied to specific physics analyses while still reflecting impor-
tant aspects of jet substructure. However, it is reliant on a clear definition of matching
between truth constituents and reconstructed clusters; a matching radius must be chosen,
and the 3-dimensional shape of every cell should be considered. Tight integration with the
detector simulation could introduce depth information to truth constituents, potentially
improving the fidelity of the association. Nonetheless, reliance on Monte-Carlo truth
information introduces potential biases, as different event generators may produce varying
constituent-level structures.

In order to find cluster-level proxies for splitting performance, the matching of split to non-
split clusters (Section 3.5) could be further refined. While the current approach provides
a useful starting point, tighter integration with the reconstruction chain is needed to
mitigate ambiguities due to jet grooming or similar effects.

While topo-clustering remains a crucial step in ATLAS calorimeter reconstruction, the
advent of successor algorithms for LCTopo jets presents new opportunities for improve-
ment. As an example, TCCs (Track-CaloClusters) [40] already add to the default splitting
behavior by incorporating tracking information in an additional step. This does not
preclude further enhancements to the underlying topo-clustering and splitting algorithms,
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as TCCs still build on top of the existing clusters. Neutral particles in particular
could benefit from improved calorimeter-level reconstruction, given that TCCs primarily
enhance charged particle reconstruction through track association.

The systematic framework developed in this thesis provides a foundation for future
splitting algorithm research. The multi-level analysis approach, novel matching method-
ologies, and performance evaluation techniques established here can be applied to the
assessment of more sophisticated algorithmic approaches and guide the development of
next-generation calorimeter reconstruction software.

Ultimately, while current splitting algorithms provide essential functionality for jet
substructure analyses, substantial room for improvement remains. The combination of
more intelligent algorithmic approaches, expanded application domains, and refined opti-
mization techniques offers the potential for major advances in boosted object identification
capabilities, with corresponding benefits for both Standard Model precision measurements
and beyond-Standard-Model searches at ATLAS and future experiments.
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A Features
A.1 Restructured
Below is the Awkward Array data structure for a cell-level sample. It does not directly
correspond to the structure in the ROOT files; instead, it has been restructured to
make use of nested arrays and records wherever possible, reducing redundancy and
improving usability.

{
    meta: {
        eventNumber: int64,
        runNumber: int32,
        seqNumber: int64,
        _is_signal: bool
    },
    jet / jetNS: {
        Cal / Raw / Area: {
            E: float32,
            Pt: float32,
            Eta: float32,
            Rap: float32,
            Phi: float32,
            M: float32
        },
        Tau1: float32,
        Tau2: float32,
        Tau3: float32,
        ECF1: float32,
        ECF2: float32,
        ECF3: float32,
        NConst: int32
    },
    truthJet: {
        E: float32,
        Pt: float32,
        Eta: float32,
        Rap: float32,
        Phi: float32,
        M: float32,
        Tau1: float32,
        Tau2: float32,
        Tau3: float32
    },
    truthConstit: var * {
        E: float32,
        Pt: float32,
        Eta: float32,
        Phi: float32
    },
    clusters / clustersNS: var * {
        cells: var * cell[
            eta: float32,
            phi: float32,
            sampling: float32,
            E: float32,
            significance: float32,
            time: float32
        ],
        E: float32,
        Pt: float32,
        Eta: float32,
        Phi: float32,
        sumCellE: float32,
        time: float32,
        fracE: float32,
        fracE_ref: float32,
        ePerSampling: 28 * float32,
        EM_PROBABILITY: float32,

        HAD_WEIGHT: float32,
        OOC_WEIGHT: float32,
        DM_WEIGHT: float32,
        ENG_CALIB_TOT: float32,
        ENG_CALIB_OUT_T: float32,
        ENG_CALIB_OUT_L: float32,
        ENG_CALIB_OUT_M: float32,
        ENG_CALIB_DEAD_TOT: float32,
        ENG_CALIB_FRAC_EM: float32,
        ENG_CALIB_FRAC_HAD: float32,
        ENG_CALIB_FRAC_REST: float32,
        CENTER_MAG: float32,
        FIRST_ENG_DENS: float32,
        FIRST_PHI: float32,
        FIRST_ETA: float32,
        SECOND_R: float32,
        SECOND_LAMBDA: float32,
        DELTA_PHI: float32,
        DELTA_THETA: float32,
        DELTA_ALPHA: float32,
        CENTER_X: float32,
        CENTER_Y: float32,
        CENTER_Z: float32,
        CENTER_LAMBDA: float32,
        LATERAL: float32,
        LONGITUDINAL: float32,
        ENG_FRAC_EM: float32,
        ENG_FRAC_MAX: float32,
        ENG_FRAC_CORE: float32,
        SECOND_ENG_DENS: float32,
        ISOLATION: float32,
        ENG_BAD_CELLS: float32,
        N_BAD_CELLS: float32,
        N_BAD_CELLS_CORR: float32,
        BAD_CELLS_CORR_E: float32,
        BADLARQ_FRAC: float32,
        ENG_POS: float32,
        SIGNIFICANCE: float32,
        CELL_SIGNIFICANCE: float32,
        CELL_SIG_SAMPLING: float32,
        AVG_LAR_Q: float32,
        AVG_TILE_Q: float32,
        ENG_BAD_HV_CELLS: float32,
        N_BAD_HV_CELLS: float32,
        PTD: float32,
        MASS: float32,
        SECOND_TIME: float32
    }
}
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A.2 Cluster-Level Variables

name formula description

E 𝐸EM
clus EM-scale cluster energy.

Pt 𝑝EM
𝑇,clus EM-scale cluster transverse

momentum.

Eta 𝜂clus Cluster pseudorapidity (EM
scale).

Phi 𝜙clus Cluster azimuth (EM scale).

sumCellE ∑𝑖: 𝐸EM
cell,𝑖>0 𝑤geo

cell,𝑖 𝐸EM
cell,𝑖 Sum of positive EM-scale cell

energies in the cluster (with
geometric weights).

fracE 𝑓EM
E, clus = 𝐸EM

clus

∑𝑁particle
clus

𝑖=1 𝐸EM
clus,𝑖

Cluster’s fraction of the par-
ent particle/jet EM energy
carried by all its topo-clusters.

fracE_ref 𝐹EM
E, clus = 𝐸EM

clus
𝐸truth

particle (jet)

Cluster EM energy over truth
particle/jet energy.

EM_PROBABILITY 𝑃EM
clus ∈ [0, 1] Probability that the cluster is

EM-like (used for LCW inter-
polation).

HAD_WEIGHT 𝑃EM
clus 𝑤em-cal

clus +
(1 − 𝑃EM

clus ) 𝑤had-cal
clus

Effective cluster-level weight
combining EM and HAD cali-
brations.

ECalib 𝐸LCW
clus LCW-calibrated cluster en-

ergy.

PtCalib 𝑝LCW
𝑇,clus LCW-calibrated cluster trans-

verse momentum.

EtaCalib 𝜂LCW
clus Cluster pseudorapidity after

LCW.

PhiCalib 𝜙LCW
clus Cluster azimuth after LCW.

sumCellECalib ∑𝑖: 𝐸EM
cell,𝑖>0 𝑤LCW

cell,𝑖 𝐸EM
cell,𝑖 Sum of calibrated (LCW) cell

energies in the cluster.

fracECalib 𝑓LCW
E, clus = 𝐸LCW

clus

∑𝑁particle
clus

𝑖=1 𝐸LCW
clus,𝑖

LCW energy fraction within
the parent particle/jet.

fracECalib_ref 𝐹LCW
E, clus = 𝐸LCW

clus
𝐸truth

particle (jet)

LCW energy over truth parti-
cle/jet energy.
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CENTER_X 𝑋clus Cluster center of gravity, x
(detector frame).

CENTER_Y 𝑌clus Cluster center of gravity, y
(detector frame).

CENTER_Z 𝑍clus Cluster center of gravity, z
(detector frame).

CENTER_MAG 𝑟clus Distance of cluster center from
the nominal vertex.

CENTER_LAMBDA 𝜆clus Depth from calorimeter front
face along the shower axis.

FIRST_PHI ⟨𝜙⟩ Energy-weighted first moment
of the cells’ 𝜙 distribution.

FIRST_ETA ⟨𝜂⟩ Energy-weighted first moment
of the cells’ 𝜂 distribution.

DELTA_PHI Δ𝜙 Azimuth of the principal
shower axis relative to the
vertex direction.

DELTA_THETA Δ𝜃 Polar-angle offset of the prin-
cipal shower axis vs. vertex
direction.

DELTA_ALPHA Δ𝛼 Angle between center-of-grav-
ity direction and shower axis.

SECOND_R ⟨𝑟2⟩ Second moment of radial dis-
tances to the shower axis.

SECOND_LAMBDA ⟨𝜆2⟩ Second (longitudinal) moment
along the shower axis.

LATERAL ⟨𝑚2
lat⟩ Lateral energy dispersion mo-

ment.

LONGITUDINAL ⟨𝑚2
long⟩ Longitudinal energy disper-

sion moment.

ISOLATION 𝑓iso Topological isolation of the
cluster (0 → surrounded, 1 →
isolated).

FIRST_ENG_DENS ⟨𝜌cell⟩ First moment of cell energy
density in the cluster.
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SECOND_ENG_DENS ⟨𝜌2
cell⟩ Second moment of cell energy

density.

ENG_FRAC_EM 𝑓emc Fraction of cluster energy in
the EM calorimeter.

ENG_FRAC_MAX 𝑓max Most energetic cell’s energy
fraction.

ENG_FRAC_CORE 𝑓core Energy fraction in the cluster
core.

ENG_POS 𝐸EM
clus,pos Sum of positive EM cell ener-

gies (alias of the positive-sum
definition).

SIGNIFICANCE 𝜁EM
clus Cluster signal significance (en-

ergy/noise).

CELL_SIGNIFICANCE max{𝜁EM
cell } Maximum cell significance in

the cluster.

CELL_SIG_SAMPLING layer(arg max𝑖 𝜁EM
cell,𝑖) Sampling layer of the max-

significance cell.

PTD 𝑝𝐷
𝑇 =

∑𝑖(𝐸
EM
cell,𝑖)2

∑𝑖 𝐸EM
cell,𝑖

Energy-concentration (jet-
analogue) using cell energies.

MASS 𝑚EM
clus Cluster invariant mass from

cells with 𝐸EM
cell > 0 (diagnos-

tic).

SECOND_TIME 𝜎2
𝑡,clus Second moment (spread) of

the cluster’s cell-time distrib-
ution.
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B Monte-Carlo Samples
The following Monte-Carlo samples were used in this thesis. Each bullet point corresponds
to one sample and one directory, containing 100 ROOT files each. Different samples may
contain different sets of features. As an example, jetLevel_noPU  does not contain any
per-cluster or per-cell features.
jetLevel_noPU

• user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ6WithSW.mc20e_noPU_LargeR_March12_
v0_mltree_cluster_calo.root

• user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ7WithSW.mc20e_noPU_LargeR_March12_
v0_mltree_cluster_calo.root

• user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_noPU_LargeR_March12_v0_
mltree_cluster_calo.root

• user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_noPU_LargeR_March12_v0_mltree_
cluster_calo.root

jetLevel_withPU

• user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ6WithSW.mc20e_withPU_LargeR_March12_
v0_mltree_cluster_calo.root

• user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ7WithSW.mc20e_withPU_LargeR_March12_
v0_mltree_cluster_calo.root

• user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_withPU_LargeR_March12_v0_
mltree_cluster_calo.root

• user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_withPU_LargeR_March12_v0_
mltree_cluster_calo.root

clusterLevel_withPU

• JetLevel/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ6WithSW.mc20e_withPU_LargeR_
April17_v0_mltree_cluster_calo.root

• JetLevel/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ7WithSW.mc20e_withPU_LargeR_
April17_v0_mltree_cluster_calo.root

• JetLevel/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_withPU_LargeR_April17_
v0_mltree_cluster_calo.root

• JetLevel/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_withPU_LargeR_April17_
v0_mltree_cluster_calo.root

cellLevel_withPU

• JetLevel_Cells/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ6WithSW.mc20e_withPU_
LargeR_April25_v0_mltree_cluster_calo.root

• JetLevel_Cells/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ7WithSW.mc20e_withPU_
LargeR_April25_v0_mltree_cluster_calo.root

• JetLevel_Cells/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_withPU_LargeR_
April25_v0_mltree_cluster_calo.root

• JetLevel_Cells/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_withPU_LargeR_
April25_v0_mltree_cluster_calo.root

cellLevel_withPU_noSplitting

• NoSplitting_Improved.part.lnk/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ6WithSW.mc20e_withPU_NoSplitting_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ7WithSW.mc20e_withPU_NoSplitting_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_
withPU_NoSplitting_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_
withPU_NoSplitting_July25_v0_mltree_cluster_calo.root
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gridsearch_450MeV_3Cells

• NoSplitting_Improved.part.lnk/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ6WithSW.mc20e_withPU_450MeV_3Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ7WithSW.mc20e_withPU_450MeV_3Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_
withPU_450MeV_3Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_
withPU_450MeV_3Cells_July25_v0_mltree_cluster_calo.root

gridsearch_450MeV_4Cells

• NoSplitting_Improved.part.lnk/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ6WithSW.mc20e_withPU_450MeV_4Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ7WithSW.mc20e_withPU_450MeV_4Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_
withPU_450MeV_4Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_
withPU_450MeV_4Cells_July25_v0_mltree_cluster_calo.root

gridsearch_450MeV_5Cells

• NoSplitting_Improved.part.lnk/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ6WithSW.mc20e_withPU_450MeV_5Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ7WithSW.mc20e_withPU_450MeV_5Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_
withPU_450MeV_5Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_
withPU_450MeV_5Cells_July25_v0_mltree_cluster_calo.root

gridsearch_500MeV_3Cells

• NoSplitting_Improved.part.lnk/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ6WithSW.mc20e_withPU_500MeV_3Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ7WithSW.mc20e_withPU_500MeV_3Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_
withPU_500MeV_3Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_
withPU_500MeV_3Cells_July25_v0_mltree_cluster_calo.root

gridsearch_500MeV_4Cells

• NoSplitting_Improved.part.lnk/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ6WithSW.mc20e_withPU_NoSplitting_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ7WithSW.mc20e_withPU_NoSplitting_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_
withPU_NoSplitting_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_
withPU_NoSplitting_July25_v0_mltree_cluster_calo.root
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gridsearch_500MeV_5Cells

• NoSplitting_Improved.part.lnk/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ6WithSW.mc20e_withPU_500MeV_5Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ7WithSW.mc20e_withPU_500MeV_5Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_
withPU_500MeV_5Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_
withPU_500MeV_5Cells_July25_v0_mltree_cluster_calo.root

gridsearch_550MeV_3Cells

• NoSplitting_Improved.part.lnk/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ6WithSW.mc20e_withPU_550MeV_3Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ7WithSW.mc20e_withPU_550MeV_3Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_
withPU_550MeV_3Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_
withPU_550MeV_3Cells_July25_v0_mltree_cluster_calo.root

gridsearch_550MeV_4Cells

• NoSplitting_Improved.part.lnk/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ6WithSW.mc20e_withPU_550MeV_4Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ7WithSW.mc20e_withPU_550MeV_4Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_
withPU_550MeV_4Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_
withPU_550MeV_4Cells_July25_v0_mltree_cluster_calo.root

gridsearch_550MeV_5Cells

• NoSplitting_Improved.part.lnk/user.cdelitzs.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ6WithSW.mc20e_withPU_550MeV_5Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_
JZ7WithSW.mc20e_withPU_550MeV_5Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801859.Py8EG_A14NNPDF23LO_WprimeWZ_flatpT.mc20e_
withPU_550MeV_5Cells_July25_v0_mltree_cluster_calo.root

• NoSplitting_Improved.part.lnk/user.cdelitzs.801661.Py8EG_A14NNPDF23LO_Zprime_tt_flatpT.mc20e_
withPU_550MeV_5Cells_July25_v0_mltree_cluster_calo.root
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C Sampling Layers of the ATLAS Calorimeter

Short name |𝜂| region EM/HAD Remarks

Electromagnetic barrel (LAr/lead)

PreSamplerB < 1.52 EM Thin LAr presampler in front of EMB to
correct upstream material losses.

EMB1 < 1.475 EM First (strip) layer with fine 𝜂 segmenta-
tion for 𝑒/𝛾 separation; variable granular-
ity near the edge.

EMB2 < 1.475 EM Second layer (shower-max), main EM en-
ergy measurement.

EMB3 < 1.35 EM Back layer, improves containment/leak-
age control.

Electromagnetic endcap (LAr/lead)

PreSamplerE 1.5–1.8 EM Endcap LAr presampler correcting up-
stream losses.

EME1 1.375–3.2 EM First (strip) layer with special fine-𝜂 strip
geometry and varying granularity (finer
up to |𝜂| ≈ 2.5).

EME2 1.375–3.2 EM Second layer (shower-max) in EMEC.

EME3 1.5–2.5 EM Back layer in EMEC.

Hadronic barrel & extended barrel (Tile/steel–scintillator)

TileBar0 < 1.0 HAD Barrel A-layer; steel/scintillator tiles; 64
𝜙-modules.

TileBar1 < 1.0 HAD Barrel BC-layer.

TileBar2 < 1.0 HAD Barrel D-layer (thickest radial layer).

TileExt0 0.8–1.7 HAD Extended-barrel A-layer; overlaps the
barrel in 0.8–1.0.

TileExt1 0.8–1.7 HAD Extended-barrel BC-layer.

TileExt2 0.8–1.7 HAD Extended-barrel D-layer.

Hadronic endcap (HEC; LAr/copper)

HEC0 1.5–3.2 HAD First longitudinal HEC sampling (LAr/
Cu).

HEC1 1.5–3.2 HAD Second HEC sampling.

HEC2 1.5–3.2 HAD Third HEC sampling.
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Short name |𝜂| region EM/HAD Remarks

HEC3 1.5–3.2 HAD Fourth HEC sampling (coarser granular-
ity above |𝜂| = 2.5).

Forward calorimeter (FCal; LAr with Cu/W)

FCAL0 3.1–4.9 EM EM forward module (LAr/Cu).

FCAL1 3.1–4.9 HAD First HAD forward module (LAr/W).

FCAL2 3.1–4.9 HAD Second HAD forward module (LAr/W).
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D Additional Plots

Figure A66:  ROC curves for different substructure variables
on truth and reconstruction level. (𝑊 ′ + bkg)

Figure A67:  Comparison of ROC curves for substructure variables with and without
topo-cluster splitting. (𝑍′ + bkg)
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D.1 Grid Search ROC Curves
See Section 3.8 for details.

Figure A68:  ROC curves for 𝜏 reco
32  for different splitting hyperparameters. Residuals

are shown relative to the default hyperparameters; positive residuals indicate better
performance. (𝑍′ + bkg)
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Figure A69:  ROC curves for 𝐷reco
2  for different splitting hyperparameters. Residuals

are shown relative to the default hyperparameters; positive residuals indicate better
performance. (𝑍′ + bkg)
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D.2 Signal/Background Distributions
D.2.1 Jet-Level

𝑊 ′ 𝑍′
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D.2.2 Cluster-Level

𝑊 ′ 𝑍′
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𝑊 ′ 𝑍′
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𝑊 ′ 𝑍′
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𝑊 ′ 𝑍′
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𝑊 ′ 𝑍′

80



E Additional Tables
Table A9:  90-percentile of cell pitches in 𝜂 and 𝜙 per sampling layer.

Sampling Δ𝜂 Δ𝜙/ rad
0 0.0001 0.0932
1 9.2625 × 10−05 2.3841 × 10−07

2 2.0027 × 10−05 4.7683 × 10−06

3 1.7285 × 10−05 6.3881 × 10−06

4 0.0250 0.0899
5 6.8664 × 10−05 7.2121 × 10−06

6 1.5020 × 10−05 3.0994 × 10−05

7 1.4781 × 10−05 6.4611 × 10−05

8 0.2000 0.0981
9 0.1946 0.0981

10 0.1946 0.0981
11 0.1461 0.0981
12 0.1000 0.0981
13 0.1000 0.0981
14 0.2000 0.0981
15 1.9146 0.0981
16 1.7139 0.0981
17 0.9665 0.0981
18 0.5429 0.0981
19 0.5026 0.0981
20 1.6502 0.0981
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F Complete Tables
Table A10:  Normalized EMDs between cluster-level variables

with high/low 𝑝𝑇
truth
jet . Extended version of Table 1. (𝑊 ′ + bkg)

variable unit EMD mean
(𝑝𝑇

truth
jet < 800 GeV)

mean
(𝑝𝑇

truth
jet > 2 000 GeV)

CENTER_MAG mm 0.594 2897.664 2352.156
CELL_SIGNIFICANCE 0.566 54.704 340.264
MASS GeV 0.558 1198.655 13 324.379
ENG_CALIB_TOT GeV 0.551 28.808 310.518
SIGNIFICANCE 0.548 27.426 161.036
ENG_POS GeV 0.543 29 320.573 294 640.097
sumCellE GeV 0.543 29.220 294.534
E GeV 0.543 28.738 293.833
Pt GeV 0.541 18.524 259.304
FIRST_ETA 0.510 0.026 0.010
Eta 0.510 0.026 0.010
CENTER_Z mm 0.508 58.703 18.861
ENG_CALIB_DEAD_TOT GeV 0.436 6.283 34.031
ENG_CALIB_OUT_T GeV 0.409 0.918 1.339
ENG_CALIB_OUT_M GeV 0.387 1.182 2.126
FIRST_ENG_DENS GeV/mm³ 0.355 0.004 0.031
ENG_CALIB_OUT_L GeV 0.346 1.433 2.702
fracE_ref 0.331 0.043 0.091
fracE 0.303 0.058 0.109
N_BAD_HV_CELLS 0.292 5.124 10.066
OOC_WEIGHT 0.270 1.268 1.174
SECOND_LAMBDA mm² 0.268 75 815.091 113 157.814
EM_PROBABILITY 0.254 0.220 0.150
ISOLATION 0.236 0.522 0.463
ENG_FRAC_EM 0.229 0.671 0.587
ENG_CALIB_FRAC_EM 0.224 0.229 0.153
AVG_TILE_Q 0.211 5.441 8.679
CELL_SIG_SAMPLING 0.210 4.159 4.587
DELTA_PHI rad 0.201 0.001 −0.000
CENTER_LAMBDA mm 0.192 469.676 570.335
SECOND_ENG_DENS (GeV/mm³)² 0.172 0.000 0.018
SECOND_R mm² 0.169 19 116.705 27 976.856
ENG_CALIB_FRAC_HAD 0.147 0.433 0.452
DM_WEIGHT 0.140 1.216 1.168
ENG_FRAC_CORE 0.139 0.452 0.480
time 0.132 −0.368 0.233
ePerSampling 0.132 1026.354 10 490.382
ENG_CALIB_FRAC_REST 0.132 0.334 0.394
N_BAD_CELLS_CORR 0.131 0.055 0.176
N_BAD_CELLS 0.131 0.055 0.176
CENTER_X mm 0.116 −55.841 3.722
HAD_WEIGHT 0.107 1.069 1.070
PTD 0.105 0.391 0.408
ENG_FRAC_MAX 0.105 0.309 0.332
CENTER_Y mm 0.091 18.406 0.212
DELTA_THETA rad 0.086 −0.001 −0.000
ENG_BAD_HV_CELLS 0.082 2493.803 9595.973
LONGITUDINAL 0.075 0.660 0.641
SECOND_TIME 0.064 11.488 6.450

82 COMPLETE TABLES



variable unit EMD mean
(𝑝𝑇

truth
jet < 800 GeV)

mean
(𝑝𝑇

truth
jet > 2 000 GeV)

DELTA_ALPHA 0.061 0.206 0.219
LATERAL 0.059 0.731 0.744
AVG_LAR_Q 0.049 557.054 394.404
ENG_BAD_CELLS 0.025 6.630 41.408
BAD_CELLS_CORR_E 0.025 6.630 41.408
Phi rad 0.025 0.020 −0.004
FIRST_PHI rad 0.025 0.020 −0.004
BADLARQ_FRAC 0.006 0.021 0.010
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Table A11:  Normalized EMDs between cluster-level variables
with high/low 𝑝𝑇

reco
cluster. Extended version of Table 2. (𝑊 ′ + bkg)

variable unit EMD mean
(𝑝𝑇

reco
cluster < 1 GeV)

mean
(𝑝𝑇

reco
cluster > 40 GeV)

ENG_CALIB_OUT_L GeV 1.673 0.113 5.796
ENG_CALIB_OUT_T GeV 1.377 0.252 2.298
fracE 1.224 0.000 0.279
ISOLATION 1.208 0.660 0.326
LATERAL 1.206 0.483 0.859
fracE_ref 1.201 0.000 0.229
OOC_WEIGHT 1.196 1.500 1.008
ENG_CALIB_OUT_M GeV 1.164 0.142 4.324
LONGITUDINAL 1.150 0.401 0.755
SECOND_LAMBDA mm² 1.125 12 594.243 171 239.244
CELL_SIGNIFICANCE 1.098 5.612 680.960
CENTER_LAMBDA mm 1.092 205.074 903.851
SIGNIFICANCE 1.086 3.002 306.981
CELL_SIG_SAMPLING 1.009 1.525 6.830
ENG_CALIB_TOT GeV 0.983 0.380 547.577
MASS GeV 0.978 15.995 22 917.014
ENG_POS GeV 0.977 810.669 524 480.806
sumCellE GeV 0.977 0.792 524.384
E GeV 0.976 0.638 523.321
Pt GeV 0.922 0.453 439.465
PTD 0.892 0.573 0.378
HAD_WEIGHT 0.875 1.035 1.080
EM_PROBABILITY 0.857 0.305 0.072
time 0.807 −1.165 0.523
ENG_FRAC_CORE 0.794 0.642 0.465
ENG_FRAC_MAX 0.774 0.498 0.301
N_BAD_HV_CELLS 0.757 1.279 15.474
ENG_CALIB_DEAD_TOT GeV 0.745 0.568 59.739
SECOND_R mm² 0.713 2877.340 37 029.272
AVG_TILE_Q 0.663 0.386 10.146
CENTER_MAG mm 0.606 2250.191 2771.710
FIRST_ENG_DENS GeV/mm³ 0.587 0.000 0.057
ENG_FRAC_EM 0.499 0.683 0.483
DELTA_THETA rad 0.387 −0.001 −0.000
DM_WEIGHT 0.299 1.141 1.109
ENG_CALIB_FRAC_HAD 0.295 0.491 0.414
CENTER_Y mm 0.285 6.695 −2.737
CENTER_X mm 0.280 −6.317 −3.099
N_BAD_CELLS 0.270 0.004 0.280
N_BAD_CELLS_CORR 0.270 0.004 0.280
ENG_CALIB_FRAC_REST 0.240 0.365 0.372
DELTA_ALPHA 0.223 0.161 0.207
ePerSampling 0.221 22.796 18 683.715
AVG_LAR_Q 0.221 897.382 80.629
SECOND_ENG_DENS (GeV/mm³)² 0.203 4.046 × 10−06 0.027
ENG_CALIB_FRAC_EM 0.182 0.141 0.213
Eta 0.172 0.011 0.004
FIRST_ETA 0.172 0.011 0.004
ENG_BAD_HV_CELLS 0.146 283.132 18 465.283
DELTA_PHI rad 0.134 0.000 0.000
SECOND_TIME 0.115 6.042 0.372
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variable unit EMD mean
(𝑝𝑇

reco
cluster < 1 GeV)

mean
(𝑝𝑇

reco
cluster > 40 GeV)

BAD_CELLS_CORR_E 0.046 0.064 71.603
ENG_BAD_CELLS 0.046 0.064 71.603
CENTER_Z mm 0.034 22.567 9.947
BADLARQ_FRAC 0.010 0.044 0.000
Phi rad 0.007 0.015 0.008
FIRST_PHI rad 0.006 0.015 0.008
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Table A12:  Normalized EMDs between cluster-level variables
for jets with high/low number of clusters. (𝑍′ + bkg)

variable unit EMD mean
(𝑛clus ≤ 8)

mean
(𝑛clus ≥ 40)

ENG_CALIB_OUT_T GeV 1.189 1.653 0.825
CENTER_MAG mm 0.768 2401.060 3161.950
fracE_ref 0.766 0.150 0.016
fracE 0.764 0.179 0.021
MASS GeV 0.709 14 230.989 1560.402
Pt GeV 0.692 269.680 24.105
ENG_CALIB_TOT GeV 0.684 324.952 40.047
CELL_SIGNIFICANCE 0.682 402.808 64.568
ENG_POS GeV 0.671 309 418.851 41 332.852
sumCellE GeV 0.671 309.292 41.247
E GeV 0.670 308.383 40.877
SIGNIFICANCE 0.634 173.253 36.627
Eta 0.629 −0.008 0.090
FIRST_ETA 0.629 −0.008 0.090
CENTER_Z mm 0.613 −20.857 203.435
ENG_CALIB_OUT_M GeV 0.611 2.674 1.062
ENG_CALIB_OUT_L GeV 0.578 3.392 1.319
ENG_CALIB_DEAD_TOT GeV 0.490 35.036 10.576
N_BAD_HV_CELLS 0.435 12.331 4.847
FIRST_ENG_DENS GeV/mm³ 0.422 0.035 0.005
SECOND_LAMBDA mm² 0.399 134 607.566 76 368.737
ISOLATION 0.362 0.484 0.392
CELL_SIG_SAMPLING 0.295 5.098 4.221
LATERAL 0.293 0.788 0.704
CENTER_LAMBDA mm 0.280 632.274 474.859
DM_WEIGHT 0.273 1.154 1.244
EM_PROBABILITY 0.262 0.132 0.204
DELTA_PHI rad 0.252 −0.002 0.000
HAD_WEIGHT 0.242 1.076 1.062
SECOND_R mm² 0.235 30 336.795 18 631.993
SECOND_ENG_DENS (GeV/mm³)² 0.227 0.018 0.001
ENG_FRAC_CORE 0.177 0.460 0.458
N_BAD_CELLS_CORR 0.176 0.206 0.047
N_BAD_CELLS 0.176 0.206 0.047
AVG_TILE_Q 0.174 8.639 5.725
ENG_FRAC_EM 0.168 0.574 0.636
PTD 0.164 0.385 0.403
ePerSampling 0.158 11 013.194 1459.886
CENTER_Y mm 0.156 11.123 −4.952
ENG_FRAC_MAX 0.154 0.308 0.325
CENTER_X mm 0.145 11.452 −14.074
ENG_CALIB_FRAC_HAD 0.143 0.458 0.425
OOC_WEIGHT 0.139 1.138 1.198
LONGITUDINAL 0.135 0.682 0.642
time 0.130 0.377 −0.056
DELTA_THETA rad 0.117 −0.001 −0.000
DELTA_ALPHA 0.106 0.215 0.193
ENG_CALIB_FRAC_EM 0.099 0.191 0.217
SECOND_TIME 0.084 5.346 10.371
ENG_BAD_HV_CELLS 0.076 9669.030 4126.919
AVG_LAR_Q 0.064 298.900 509.723
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variable unit EMD mean
(𝑛clus ≤ 8)

mean
(𝑛clus ≥ 40)

ENG_CALIB_FRAC_REST 0.056 0.349 0.356
ENG_BAD_CELLS 0.046 24.259 6.848
BAD_CELLS_CORR_E 0.046 24.259 6.848
BADLARQ_FRAC 0.028 0.005 0.014
FIRST_PHI rad 0.024 0.028 −0.008
Phi rad 0.023 0.028 −0.007
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Table A13:  Normalized EMDs between cluster-level variables with and without topo-cluster
splitting enabled. Extended version of Table 4. (𝑊 ′ + bkg)

variable unit EMD mean
(no splitting)

mean
(splitting)

nCells_tot 1.480 701.013 137.022
nCells 1.460 539.010 106.664
fracECalib_ref 1.363 0.443 0.077
ENG_CALIB_OUT_L GeV 1.358 11.535 1.998
fracE_ref 1.356 0.385 0.065
fracECalib 1.354 0.461 0.080
fracE 1.339 0.461 0.080
MASS GeV 1.242 64 481.297 6426.914
sumCellECalib GeV 1.160 955.366 167.641
ECalib GeV 1.157 950.753 166.866
ENG_CALIB_TOT GeV 1.148 868.934 150.104
ENG_POS GeV 1.148 834 479.445 144 174.022
sumCellE GeV 1.147 834.345 144.074
E GeV 1.145 830.368 143.512
PtCalib GeV 1.121 793.346 138.978
Pt GeV 1.110 692.734 119.676
ENG_CALIB_OUT_T GeV 1.101 3.445 1.083
ENG_CALIB_DEAD_TOT GeV 1.037 110.442 19.197
N_BAD_HV_CELLS 1.035 37.961 7.814
ISOLATION 0.936 0.711 0.465
CELL_SIGNIFICANCE 0.865 694.440 193.960
SIGNIFICANCE 0.693 248.233 89.954
SECOND_LAMBDA mm² 0.675 212 259.981 99 359.814
ENG_CALIB_OUT_M GeV 0.444 −1.000 1.590
CELL_SIG_SAMPLING 0.443 2.062 4.315
DELTA_ALPHA 0.436 0.125 0.212
FIRST_ENG_DENS GeV/mm³ 0.420 0.050 0.015
N_BAD_CELLS_CORR 0.402 0.612 0.115
N_BAD_CELLS 0.402 0.612 0.115
HAD_WEIGHT 0.379 1.047 1.070
LATERAL 0.333 0.687 0.743
CENTER_LAMBDA mm 0.313 486.009 520.934
ePerSampling 0.304 29 651.117 5116.480
AVG_TILE_Q 0.272 3.900 7.311
DELTA_THETA rad 0.267 −0.000 −0.000
PTD 0.265 0.436 0.394
ENG_BAD_HV_CELLS 0.246 29 872.849 6058.678
ENG_FRAC_MAX 0.242 0.368 0.316
ENG_FRAC_CORE 0.241 0.518 0.460
DM_WEIGHT 0.225 1.135 1.191
DELTA_PHI rad 0.225 0.001 0.000
ENG_FRAC_EM 0.224 0.562 0.627
LONGITUDINAL 0.207 0.604 0.652
SECOND_ENG_DENS (GeV/mm³)² 0.167 0.027 0.007
SECOND_R mm² 0.146 34 605.457 24 377.216
ENG_CALIB_FRAC_HAD 0.126 0.411 0.454
EM_PROBABILITY 0.120 0.141 0.174
CENTER_MAG mm 0.111 2528.488 2544.688
time 0.083 −0.221 0.042
ENG_BAD_CELLS 0.061 117.447 20.329
BAD_CELLS_CORR_E 0.061 117.447 20.329
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variable unit EMD mean
(no splitting)

mean
(splitting)

ENG_CALIB_FRAC_EM 0.059 0.246 0.187
OOC_WEIGHT 0.052 1.177 1.202
CENTER_Y mm 0.037 −10.455 5.474
FIRST_ETA 0.035 0.008 0.007
EtaCalib 0.034 0.008 0.007
Eta 0.034 0.008 0.007
CENTER_Z mm 0.032 16.033 14.401
ENG_CALIB_FRAC_REST 0.029 0.338 0.357
SECOND_TIME 0.029 4.232 8.347
CENTER_X mm 0.027 −9.183 −14.466
AVG_LAR_Q 0.009 414.041 426.207
PhiCalib rad 0.008 0.005 0.018
Phi rad 0.008 0.006 0.018
FIRST_PHI rad 0.008 0.006 0.018
BADLARQ_FRAC 0.004 0.013 0.016
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Table A14:  Normalized EMDs between cluster-level variables for non-split clusters matching 1 or
≥ 2 split clusters. Extended version of Table 5. (𝑍′ + bkg)

variable unit EMD mean
(𝑚𝑖 = 1)

mean
(𝑚𝑖 ≥ 2)

fracE 1.885 0.013 0.924
fracE_ref 1.882 0.011 0.779
SECOND_LAMBDA mm² 1.552 16 065.308 452 754.603
ENG_POS GeV 1.526 16 259.747 1 744 003.767
sumCellE GeV 1.526 16.231 1743.671
ENG_CALIB_TOT GeV 1.525 14.446 1798.484
E GeV 1.524 16.032 1733.561
CELL_SIGNIFICANCE 1.523 28.925 1278.453
SIGNIFICANCE 1.521 15.880 433.215
Pt GeV 1.473 13.230 1340.184
ENG_CALIB_OUT_L GeV 1.462 0.353 29.343
PTD 1.419 0.653 0.200
LATERAL 1.408 0.399 0.961
LONGITUDINAL 1.406 0.343 0.871
ENG_FRAC_CORE 1.342 0.699 0.297
ENG_FRAC_MAX 1.326 0.597 0.132
N_BAD_HV_CELLS 1.304 2.024 99.875
MASS GeV 1.220 695.322 178 633.243
ENG_CALIB_DEAD_TOT GeV 1.219 4.316 279.555
ENG_CALIB_OUT_T GeV 1.138 0.476 6.498
ISOLATION 1.104 0.561 0.825
CENTER_LAMBDA mm 1.013 320.671 690.126
EM_PROBABILITY 0.943 0.246 0.006
ENG_FRAC_EM 0.922 0.485 0.605
SECOND_R mm² 0.843 4616.604 103 860.578
HAD_WEIGHT 0.838 1.029 1.063
FIRST_ENG_DENS GeV/mm³ 0.805 0.003 0.074
OOC_WEIGHT 0.673 1.302 1.014
time 0.610 −0.575 0.295
N_BAD_CELLS 0.584 0.017 1.390
N_BAD_CELLS_CORR 0.584 0.017 1.390
ENG_CALIB_FRAC_HAD 0.571 0.412 0.370
ENG_CALIB_FRAC_EM 0.555 0.255 0.252
ENG_BAD_HV_CELLS 0.483 2102.052 77 702.778
ENG_CALIB_FRAC_REST 0.481 0.328 0.377
CELL_SIG_SAMPLING 0.444 1.702 2.596
AVG_TILE_Q 0.429 1.313 7.336
ePerSampling 0.407 572.597 61 909.086
CENTER_MAG mm 0.399 2574.880 2776.923
DM_WEIGHT 0.353 1.202 1.061
DELTA_THETA rad 0.234 0.000 −0.000
SECOND_ENG_DENS (GeV/mm³)² 0.229 0.001 0.035
CENTER_Y mm 0.225 −7.153 −4.255
DELTA_PHI rad 0.216 −0.002 0.001
FIRST_ETA 0.212 −9.303 × 10−05 0.000
Eta 0.212 −9.445 × 10−05 0.000
AVG_LAR_Q 0.207 778.154 35.265
CENTER_X mm 0.204 −13.425 −2.855
BADLARQ_FRAC 0.177 0.023 0.001
DELTA_ALPHA 0.176 0.127 0.138
SECOND_TIME 0.160 6.801 0.757
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variable unit EMD mean
(𝑚𝑖 = 1)

mean
(𝑚𝑖 ≥ 2)

BAD_CELLS_CORR_E 0.152 1.471 252.702
ENG_BAD_CELLS 0.152 1.471 252.702
CENTER_Z mm 0.113 0.745 0.691
Phi rad 0.010 −0.006 0.001
FIRST_PHI rad 0.010 −0.006 0.001
ENG_CALIB_OUT_M GeV 0.000 −1.000 −1.000
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Table A15:  Normalized EMDs between 𝑁matching ≤ 5 and 𝑁matching ≥ 20. Extended version of
Table 6. (convex hull method) (𝑍′ + bkg)

variable unit EMD mean
(𝑁matching ≤ 5)

mean
(𝑁matching ≥ 20)

ENG_CALIB_OUT_T GeV 2.690 0.604 1.754
ENG_CALIB_OUT_M GeV 1.438 0.544 3.350
ENG_CALIB_OUT_L GeV 1.369 0.571 4.568
fracE 1.272 0.006 0.194
fracE_ref 1.247 0.005 0.158
CELL_SIGNIFICANCE 1.226 18.454 515.279
MASS GeV 1.169 404.816 17 571.809
SIGNIFICANCE 1.166 11.096 235.392
ENG_CALIB_TOT GeV 1.153 8.491 403.457
ENG_POS GeV 1.142 8822.642 387 454.358
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Table A16:  Normalized EMDs between 𝑁matching ≤ 5 and 𝑁matching ≥ 20. Extended version of
Table 7. (pitch-aware method) (𝑍′ + bkg)

variable unit EMD mean
(𝑁matching ≤ 5)

mean
(𝑁matching ≥ 20)

ENG_CALIB_OUT_T GeV 2.360 0.479 1.449
ENG_CALIB_OUT_L GeV 1.092 0.593 2.926
OOC_WEIGHT 1.079 1.347 1.041
SECOND_LAMBDA mm² 1.070 17 920.171 175 924.693
ENG_CALIB_OUT_M GeV 1.054 0.505 2.275
CELL_SIG_SAMPLING 1.041 1.579 6.936
CENTER_LAMBDA mm 0.972 211.208 802.358
ISOLATION 0.934 0.552 0.304
LATERAL 0.865 0.617 0.862
AVG_TILE_Q 0.851 0.319 14.113
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Table A17:  Overview of the performance of different splitting hyperparameters in terms of the
AUC of different substructure variables as well as their improvement relative to the default

hyperparameters. (𝑊 ′ + bkg)
𝐸thresh/ MeVNNthresh AUC(𝜏 reco

21 ) AUC(𝜏 reco
32 ) AUC(𝐷reco

2 )ΔAUC(𝜏 reco
21 )ΔAUC(𝜏 reco

32 )ΔAUC(𝐷reco
2 )⟨ΔAUC⟩

550 4 0.646 0.589 0.653 −0.001 −0.003 +0.008 0.001
550 5 0.646 0.589 0.653 −0.001 −0.004 +0.008 0.001
550 3 0.644 0.589 0.654 −0.003 −0.003 +0.009 0.000
500 4 0.647 0.593 0.644 +0.000 +0.000 +0.000 0.000
500 3 0.649 0.584 0.649 +0.002 −0.008 +0.004 −0.000
500 5 0.649 0.584 0.649 +0.002 −0.008 +0.004 −0.000
450 4 0.652 0.582 0.643 +0.004 −0.010 −0.001 −0.002
450 3 0.652 0.582 0.643 +0.004 −0.010 −0.001 −0.002
450 5 0.652 0.582 0.643 +0.004 −0.010 −0.001 −0.002
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