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Abstract

The deconvolution of energy spectra is a common problem in neutrino astronomy.
As an inverse problem, its solution requires special methods. The Dortmund
Spectrum Estimation Algorithm (DSEA+) [9] solves the deconvolution problem by
reinterpreting it as a multinomial classification problem and eliminates bias from
the training data by iteratively re-weighting the samples. In the problem at hand,
discretized neutrino energies are ordinal quantities, implying that misclassification
can be of different severity. However, most classifiers do not respect this property.
Previous works have focused either on respecting ordinality [23] or on using a neural
network as a classifier [21]. This thesis aims to combine the advantages of both
approaches: the flexibility of neural networks and the potential improvements in
physical plausibility due to respecting ordinality. First, the Conditional Ordinal
Regression for Neural Networks (CORN) framework [43] is adapted to work with
DSEA+. The proposed method is then optimized and evaluated on simulated data
from IceCube.

Kurzfassung

Die Entfaltung von Energiespektren ist ein gängiges Problem in der Neutrinoas-
tronomie. Da es sich um ein inverses Problem handelt, erfordert seine Lösung
spezielle Methoden. Der Dortmund Spectrum Estimation Algorithm (DSEA+) [9]
löst das Entfaltungsproblem, indem er dieses als ein mehrklassiges Klassifikation-
sproblem uminterpretiert, und eliminiert den Bias aus den Trainingsdaten, indem er
die Samples iterativ neu gewichtet. Im vorliegenden Problem sind diskretisierte Neu-
trinoenergien ordinal, was impliziert, dass Fehlklassifikationen unterschiedlich stark
sein können. Allerdings respektieren die meisten Klassifizierer diese Eigenschaft nicht.
Vorherige Arbeiten haben sich entweder auf die Berücksichtigung der Ordinalität [23]
oder auf die Verwendung eines neuronalen Netzwerks als Klassifizierer [21] fokussiert.
Diese Arbeit hat zum Ziel, die Vorteile beider Ansätze zu kombinieren: die Flexibil-
ität von neuronalen Netzwerken und die potenzielle Verbesserung der physikalischen
Plausibilität aufgrund der Berücksichtigung von Ordinalität. Zunächst wird Con-
ditional Ordinal Regression for Neural Networks (CORN) [43] angepasst, um mit
DSEA+ kompatibel zu sein. Die vorgeschlagene Methode wird dann optimiert und
auf simulierten Daten von IceCube evaluiert.
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1 Introduction

Astroparticle physics is a relatively new field of physics that explores the universe
with messenger particles. They carry information about the production processes and
the environment they were created in, which can be obtained upon their detection.
Neutrinos are especially valuable messenger particles because their propagation path
is not affected by electromagnetic fields, and they can propagate long distances
without interacting with matter.

IceCube is a detector for such neutrinos, which is located at the South Pole. The
Antarctic ice is used as detector material and is sensitive to high-energy neutrinos.
One goal of analyses with IceCube is to obtain a neutrino energy spectrum.

The Dortmund Spectrum Estimation Algorithm (DSEA+) [9] is a method to recon-
struct the (discretized) neutrino energy spectrum from measured data of IceCube.
While classifiers such as random forests have been successfully applied to IceCube
data using DSEA+ [22], the possibilities of neural networks and deep learning are
still largely unexplored. Haefs [21] combined DSEA+ with a neural network for the
first time. Jäkel [23], on the other hand, focused on the ordinality of the discretized
energy spectrum by employing LogisticAT [32], a classifier that considers the order-
ing of energy bins in its loss function. This thesis aims to combine the advantages
of both approaches: the flexibility of neural networks and the potential improve-
ments in physical plausibility due to respecting ordinality. The Conditional Ordinal
Regression for Neural Networks (CORN) framework [43] allows neural networks to
respect ordinality by using a special loss function and activation function in the
output layer. It is adapted to work with DSEA+ by converting from conditional
confidences to per-class confidences and adding support for sample weights. This
combination of CORN and DSEA+ is then optimized and evaluated on simulated
data from IceCube.

This paper is organized as follows: Chapter 2 briefly introduces IceCube and
important concepts of neutrino astronomy. Chapter 3 describes the deconvolution
problem and the DSEA+ approach to solving it. Chapter 4 explains the benefits of
ordinal classification and introduces the CORN framework. Chapter 5 describes the
setup for hyperparameter searches and evaluates the performance of the optimized
model. Chapter 6 summarizes the thesis and discusses future work.
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2 Neutrino Astronomy

This chapter provides an introduction to the field of neutrino astronomy and describes
the IceCube Neutrino Observatory, the experimental background of this thesis.

2.1 Neutrinos

Neutrinos are elementary particles with no electric charge and small mass. Their
low interactivity makes them difficult to detect, but is also the reason why they are
valuable messenger particles for astroparticle physics: Since they are not affected by
the electromagnetic force, cosmic magnetic fields have no effect on their propagation
paths [25]; neither does the interstellar medium absorb them in significant amounts.
Together with the energy of the neutrino, the direction of propagation is used to
determine the location and properties of the source [25].

Neutrinos have various astronomical sources, many of which are not experimentally
confirmed yet. This includes the cosmic neutrino background (CNB) [18] which
originates from the Big Bang as well as various sources of cosmic ray acceleration (and
therefore neutrino emission) [4], such as supernova remnant (SNR) shocks, active
galactic nuclei (AGN), jets, starburst galaxies, and gamma-ray bursts. Neutrinos
are also produced in the Sun and in the Earth’s atmosphere as well as in nuclear
reactors. They cover a vast range of energies, from µeV up to PeV, depending on
the source. Figure 2.1 shows the flux spectrum of neutrinos from different sources.

While current models of astrophysical neutrino sources predict a flavor ratio of
𝜙(𝜈𝑒) ∶ 𝜙(𝜈𝜇) ∶ 𝜙(𝜈𝜏) = 1 ∶ 2 ∶ 0 (assuming charged pions decays are the dominant
mechanism for neutrino production), the observed ratio on Earth is 1 ∶ 1 ∶ 1 [5].
This discrepancy is explained by neutrino oscillations [5], which are a consequence
of the fact that neutrinos have mass. Albeit being very light (the current lowest
upper limit on the Majorana mass being 0.06 eV to 0.161 eV [20]), it allows for
oscillations between the different flavors, given the large distances that cosmic
neutrinos travel.
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2.2 IceCube

Figure 2.1: Measured and expected fluxes of natural and reactor neutrinos as a
function of their energy [44].

2.2 IceCube

The IceCube Neutrino Observatory is located close to the geographic South Pole
in proximity to the Amundsen-Scott South Pole Station. It utilizes the optically
clear Antarctic ice as detector material, with a total detector volume of 1 km3

[2]. The detector is composed of 86 strings, each consisting of 60 digital optical
modules (DOMs), which are positioned 17 m apart along the string at depths ranging
from 1450 m to 2450 m below the surface [2]. Each of the 5160 DOMs is equipped
with a sensitive photomultiplier tube (PMT), which detects the Cherenkov light
emitted by charged particles that interact with the ice. Figure 2.2 shows a schematic
of the IceCube detector.

Neutrinos interact with matter via the weak interaction. In order to compensate
for the low cross-section of the weak interaction, the effective detector volume is
maximized by utilizing existing naturally occurring detector materials, such as
the Earth’s atmosphere, the sea, or the ice in the Antarctica. When a neutrino
interacts with a nucleus in the ice, it produces a charged lepton and a neutrino. The
charged lepton then produces a Cherenkov light cone as it propagates through the
ice with greater speed than the speed of light in the ice. The light is detected by
the PMTs and the direction of the neutrino can be reconstructed from the position
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2 Neutrino Astronomy

Figure 2.2: Infographic of the IceCube Neutrino Observatory [13]. Each dot
represents a DOM.

of the DOMs that detected the light. The intensity of the light and the number of
PMTs that detected it are used to determine the energy of the neutrino. IceCube
is sensitive to the approximate neutrino energy range from GeV to PeV [2] and
therefore primarily to atmospheric and AGN neutrinos. Higher energies require
even larger detector volumes.

Depending on the flavor of the leptons, different types of interactions occur, allowing
to determine the flavor of the neutrino in turn. Muon neutrinos are detected as tracks
[2] which originate from a charged-current interaction of a high-energy muon neutrino
with a nucleus. They have a good angular resolution because muons typically fall
under the Cherenkov limit as soon as they scatter. Electron neutrinos, on the other
hand, are detected as cascades [2]. Contrary to muons, electrons typically scatter
several times before falling below the Cherenkov threshold, therefore prohibiting the
reconstruction of the neutrino direction. On the other hand, they are more likely
to be fully contained in the detector, which makes them useful for energy studies
[2]. A third type of signature is the double bang [28] or lollipop [5], which very high
energy tau neutrinos could produce. It has not been observed so far [3]. Examples
of interactions and corresponding detector patterns are shown in Figure A.1.

Not only neutrinos can leave traces in the detector, but also atmospheric muons. For
this reason, the detection is mostly limited to up-going events [2], because muons –
in contrast to neutrinos – are mostly blocked by the Earth’s mass.
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3 Solving the Deconvolution Problem with DSEA+

In this chapter, a formal definition of inverse problems and the deconvolution
problem in particular is given. The DSEA+ algorithm is then introduced as a
solution thereof.

3.1 The Deconvolution Problem

Inverse problems are omnipresent in modern physics. They occur whenever a
physical quantity is measured indirectly. For example, the intensity of light can
be measured by a photodetector, which converts the light into an electrical signal.
However, this conversion is not perfect: A real detector has limited acceptance and
resolution and the signal is subject to noise. The deconvolution problem – as a
special case of inverse problems – is to reconstruct the distribution of the physical
quantity of interest from the indirect measurements.

Mathematically, a set of single physical quantities 𝑥 limited to an arbitrary range
𝑎 ≤ 𝑥 ≤ 𝑏 (such as the energy of a neutrino) can be interpreted as samples from
an event spectrum 𝑓(𝑥). Given the measured distribution 𝑔(𝑦) and a response
function 𝐴(𝑥, 𝑦), which describes the detector, the deconvolution problem is to find
a distribution 𝑓(𝑥) that satisfies the Fredholm integral equation of the first kind
[19]:

∫
𝑏

𝑎
𝐴(𝑥, 𝑦)𝑓(𝑥) d𝑥 = 𝑔(𝑦) . (3.1)

3.1.1 Discretization

In the context of physical measurements, the integral equation is discretized to
account for the finite number of samples. The continuous distribution functions 𝑓(𝑥)
and 𝑔(𝑦) are replaced by vectors ⃗𝑓 and ⃗𝑔, and the kernel (response function) 𝐴(𝑥, 𝑦)
by a transfer matrix 𝑨. The discretized deconvolution problem is then given by

𝑨 ⃗𝑓 = ⃗𝑔 . (3.2)
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3 Solving the Deconvolution Problem with DSEA+

In practice, the transfer matrix can be approximated by Monte Carlo simulations of
the detector, where both the true and the measured quantities are known. Given
an actual set of measurements ⃗𝑔, the deconvolution problem can then be solved by
inverting the transfer matrix:

⃗𝑓 = 𝑨−1 ⃗𝑔 . (3.3)

However, as is common with inverse problems, the matrix is usually ill-conditioned,
leading to numerical instabilities and oscillations in the solution. One approach to
overcome this problem is regularization. It allows for better results at the cost of
introducing additional a priori assumptions and parameters (bias-variance trade-off )
[27]. A common regularization technique is to penalize the second derivative of the
solution [45], which is known as Tikhonov regularization [46]. This incentivizes the
solution to be smooth, which is often a reasonable assumption for distributions of
physical quantities.

3.2 Dortmund Spectrum Estimation Algorithm

The Dortmund Spectrum Estimation Algorithm (DSEA+) [9] is an iterative method
for solving the previously stated deconvolution problem. It improves upon its
predecessor Dortmund Spectrum Estimation Algorithm (DSEA) [41] by correcting
the re-weighting of training examples and giving more control over the speed of
convergence. A formal definition of the DSEA+ algorithm is given in section A.2.

3.2.1 Deconvolution as a Classification Task

DSEA+ makes use of classifiers to solve the deconvolution problem. This requires
the deconvolution problem to be discretized (see subsection 3.1.1) and reformulated
as a multinomial classification task.

Any classifier that outputs probabilities for each class can be used with DSEA+. This
is an advantage, as the choice of a classifier can be tailored to the specific problem
at hand. Contrary to other algorithms like Time-dependent Regularized Unfolding
for Economics and Engineerings (TRUEE) / Regularized Unfolding (RUN) [30] or
Iterative Bayesian Unfolding (IBU) [14, 15], no restrictions on the input data are
imposed.

Furthermore, DSEA+ transparently provides the contributions of individual obser-
vations to the deconvolved spectrum. This not only gives deeper insight into the
performance of the algorithm, but also allows for time-dependent deconvolution
[8].
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3.2 Dortmund Spectrum Estimation Algorithm

3.2.2 Procedure

Initialization

Since no prior knowledge about the true spectrum is available, the initial spectrum
is chosen to be uniform. Given 𝐼 bins, each bin is initialized to

f̂(0)
𝑖 = 1

𝐼
∀𝑖 . (3.4)

The initial weights are then determined as in Equation 3.6.

Iteration

First, the classifier is trained on the training data to predict the class of one sample
at a time, where each sample is weighted according to its true class. Second, the
classifier is used to predict the class of each sample in the observed (/test) data.
Third, the predicted classes are used to get an updated estimate of the spectrum
and, consequently, updated weights for the next iteration. The new spectrum is
determined by the sum of the confidences of all events. For each energy bin with
index 𝑖, this can be written as

f̂𝑖 = 1
𝑁

𝑁
∑
𝑛=1

̂𝑐𝑖,𝑛 , (3.5)

where 𝑁 is the number of events in the observation data set, 𝑘 is the current iteration
number, and ̂𝑐𝑖,𝑛 is the confidence that event 𝑛 belongs to class 𝑖. The factor 1/𝑁 is
introduced to normalize the spectrum to a true probability density distribution. The
weights of the training samples are then updated according to the new spectrum f̂(𝑘)

𝑖 .
In DSEA+, the reconstructed spectrum is divided by the training spectrum in order
to mitigate the impact of the training spectrum on the deconvolution result. A more
detailed reasoning is given in [8]. The updated weights are given by

𝑤(𝑘+1)
𝑖 = f̂(𝑘)

𝑖
ftrain
𝑖

, (3.6)

where 𝑤(𝑘+1)
𝑖 is the weight applied to training samples with true bin 𝑖 in iteration 𝑘+1,

and ftrain
𝑖 is the value of the 𝑖-th bin in the training spectrum.

The iterative procedure is repeated with the updated weights until convergence (see
subsection 3.2.3) or, in case of fixed step sizes, a maximum number of iterations
is reached. The final deconvolution result is the spectrum obtained in the last
iteration.
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3 Solving the Deconvolution Problem with DSEA+

3.2.3 Step Size Functions

DSEA+ introduces the concept of a step size 𝛼, which allows the user to control the
speed of convergence, which in turn has a significant impact on the quality of the
result.

A step 𝑝(𝑘)
𝑖 is the difference between the current and previous deconvolution result:

𝑝(𝑘)
𝑖 = f̂(𝑘)

𝑖 − f̂(𝑘−1)
𝑖 . (3.7)

Instead of updating the spectrum with the current deconvolution result f(𝑘)
𝑖 directly,

the step is multiplied with the step size and added to the previous deconvolution
result:

f̂(𝑘)+
𝑖 = f̂(𝑘−1)

𝑖 + 𝛼 ⋅ 𝑝(𝑘)
𝑖 . (3.8)

This improved estimate f̂(𝑘)+
𝑖 is then considered instead of f̂(𝑘)

𝑖 .

While the original DSEA algorithm uses a fixed step size of 𝛼 = 1, DSEA+ allows
arbitrary constants 𝛼 > 0 or functions of the iteration number 𝑘. Commonly used
step size functions include multiplicative decay 𝛼(𝑘) = 𝑘𝜂−1 and exponential decay
𝛼(𝑘) = 𝜂(𝑘−1), each with a decay rate 0 < 𝜂 < 1. These decaying step sizes ensure
that the algorithm converges, decreasing the importance of the maximum number of
iterations 𝐾, while enabling the use of a stopping criterion: When the 𝜒2 distance
becomes smaller than 𝜖, convergence is assumed and the training is stopped. In this
work, the probabilistic symmetric 𝜒2 distance [11, 8]

𝜒2
Sym(f̂, f) = 2 ⋅

𝐼
∑
𝑖=1

(f̂𝑖 − f𝑖)2

f̂𝑖 + f𝑖
(3.9)

is used.

The utilization of adaptive step sizes [8] can further improve the convergence of the
algorithm by choosing an optimal step size for each iteration. This is achieved by
searching along the direction of the step 𝑝(𝑘)

𝑖 for the step size 𝛼 ≥ 0 which minimizes
the RUN [30] loss function. In the process, the method discretizes the training data
using a decision tree, thus adding a hyperparameter 𝐽 that controls the number of
its leaves.
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4 Ordinal Classification

DSEA+ can solve the deconvolution problem given any capable classifier. However,
classifiers usually do not take into account ordinality, which contradicts the physical
meaning of the unfolded spectrum. This chapter clarifies the concept of ordinality
and introduces the CORN algorithm, which applies it to neural networks.

4.1 On Nominal and Ordinal Data

Nominal data can be thought of as a set of distinct categories (classes) with no
inherent ordering. The most common classifiers, such as neural networks with
softmax output (used in [21]), and random forests (used in [22]), treat data as
nominal. Ordinal data, on the other hand, has an inherent ordering. The distance
between two categories is not necessarily the same. Instead of classes, the different
categories are commonly referred to as ranks. There are classifiers that can handle
ordinal data, such as LogisticAT [32, 23] and CORN (see section 4.2).

In the context of the problem at hand, the neutrino energies are ordinal, since they
are discretized into bins, while the ordering by energy remains intact. A classifier can
then either treat the data as nominal, disregarding the ordering, or as ordinal, taking
the ordering into account. Disregarding the ordering is especially problematic for the
reconstruction of single events or spectra that depend on an additional parameter
(such as time [22]), because in both cases, not only the unfolded spectrum (as a
normalized sum of confidence distributions), but also the confidence distribution
of single events is considered. With nominal classification, there is no incentive
for the classifier to return an unimodal confidence distribution. An event could
therefore yield high confidences for both very low and very high energies, which is
not physically plausible.
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4 Ordinal Classification

4.2 CORN

Conditional Ordinal Regression for Neural Networks (CORN) [43] is a framework for
ordinal classification in neural networks. It is based on the ideas of binary subtasks
and conditional probabilities and improves upon its direct predecessor Consistent
Rank Logits (CORAL) [10] as well as the approach by Niu et al. [34].

4.2.1 Method

Let 𝐷 = {x[𝑖], 𝑦[𝑖]}𝑁
𝑖=1

denote a data set of 𝑁 training examples, where x[𝑖] is the
𝑖-th example and 𝑦[𝑖] is its class label. Since the class labels are ordinal, they are
referred to as rank labels. Each rank label is an element of the set of all ranks
{𝑟1, 𝑟2, … , 𝑟𝐾}, where 𝐾 is the number of ranks and 𝑟1 < 𝑟2 < … < 𝑟𝐾.

For every rank label 𝑦[𝑖], 𝐾 − 1 subtasks are created. Each subtask 𝑦[𝑖]
𝑘 ∈ {0, 1} is a

binary classification task, where 𝑦[𝑖]
𝑘 = 1 if 𝑦[𝑖] > 𝑟𝑘 (in words: 𝑦[𝑖] exceeds rank 𝑟𝑘)

and 𝑦[𝑖]
𝑘 = 0 otherwise. This method of creating binary subtasks is referred to as

extended binary classification [29].

Given a test example x[𝑖] and probability predictions 𝑓𝑘(x[𝑖]) ∈ [0, 1] for each subtask
𝑘, the rank index 𝑞 ∈ {1, 2, … , 𝐾} is computed as

𝑞 =
𝐾−1
∑
𝑘=1

𝟙 {𝑓𝑘(x[𝑖]) > 0.5} . (4.1)

The predicted rank label is then obtained via ℎ(x[𝑖]) = 𝑟𝑞, where ℎ ∶ 𝒳 → 𝒴 is the
mapping from input space 𝒳 to output space 𝒴 which minimizes the CORN loss
function.

Rank monotony describes a desirable property of the rank labels, whereby the
probability of exceeding a rank 𝑟𝑘 is always greater than or equal to the probability
of exceeding a higher rank 𝑟𝑘+1. While not strictly necessary for the computation
of rank indices 𝑞 (or ranks 𝑟𝑞), it is intuitively clear that imposing such a restriction
could improve the quality of predictions. CORN ensures rank monotony 𝑓1(x[𝑖]) ≤
𝑓2(x[𝑖]) ≤ … ≤ 𝑓𝐾−1(x[𝑖]) by applying the chain rule of probability

̂𝑃 (𝑦[𝑖] > 𝑟𝑘) =
𝑘

∏
𝑗=1

𝑓𝑗(x[𝑖]) (4.2)

to the conditional probabilities

𝑓𝑘(x[𝑖]) = ̂𝑃 (𝑦[𝑖] > 𝑟𝑘 ∣ 𝑦[𝑖] > 𝑟𝑘−1) . (4.3)

10



4.2 CORN

CORN also provides the loss function. The conditional nature of the predictions
𝑓𝑘(x[𝑖]) (see Equation 4.3) is respected by splitting the training data into conditional
training subsets 𝑆𝑘 each time the loss function is computed:

𝑆1 ∶ all {(x[𝑖], 𝑦[𝑖])} for 𝑖 ∈ {1, … , 𝑁} ,
𝑆2 ∶ {(x[𝑖], 𝑦[𝑖]) ∣ 𝑦[𝑖] > 𝑟1} ,

⋯
𝑆𝐾−1 ∶ {(x[𝑖], 𝑦[𝑖]) ∣ 𝑦[𝑖] > 𝑟𝐾−2} .

In words, for 𝑘 > 1, 𝑆𝑘 contains all training examples for which the rank label
exceeds rank 𝑟𝑘−1. The first subset 𝑆1 contains all training examples.

The definition of the loss function is shown in Equation 4.4. Here, |𝑆𝑘| denotes the
number of elements in the subset 𝑆𝑘.

𝐿(X, y) = − 1
∑𝐾−1

𝑗=1 |𝑆𝑗|

𝐾−1
∑
𝑗=1

|𝑆𝑗|

∑
𝑖=1

[log(𝑓𝑗(x[𝑖])) · 𝟙 {𝑦[𝑖] > 𝑟𝑗}

+ log(1 − 𝑓𝑗(x[𝑖])) · 𝟙 {𝑦[𝑖] ≤ 𝑟𝑗}] (4.4)

4.2.2 Obtaining Probabilities from CORN

As explained in subsection 4.2.1, CORN only returns a single predicted rank 𝑟𝑞
for a given input x. In contrast, DSEA+ is strongly coupled to the idea of per-
class probabilities (confidences). Therefore, a conversion is necessary. Under the
assumption that all energies belong to one of the ranks (bins), such a conversion is
realizable.

As an example, given four rank indices 𝑞 ∈ {0, 1, 2, 3}, the conditional probabilities
are

̂𝑃 (𝑞 = 0) = 1 − ̂𝑃 (𝑞 > 0)
̂𝑃 (𝑞 = 1) = ̂𝑃 (𝑞 > 1) − ̂𝑃 (𝑞 > 1)
̂𝑃 (𝑞 = 2) = ̂𝑃 (𝑞 > 1) − ̂𝑃 (𝑞 > 2)
̂𝑃 (𝑞 = 3) = ̂𝑃 (𝑞 > 2)

A more detailed explanation is given in section A.3.
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5 Unfolding with CORN

This chapter describes the performance and optimization tests of the CORN algo-
rithm in DSEA+.

5.1 Setup

In order to evaluate the performance of CORN in DSEA+, a data set has to be
prepared and hyperparameters need to be chosen. The setup is largely based on
previous works [23, 21] to ensure comparability of the results as much as possible.

5.1.1 Monte Carlo Data Set and Preprocessing

The unmodified data set 11374 [12] consists of about 13 million Monte Carlo simu-
lated up-going muon neutrino events, with a weighted 𝐸−2 energy spectrum ranging
from 102 GeV to 108 GeV. The energies are stored under the key MCPrimary.energy.
See Figure A.2 for a histogram of the data.

To ensure comparability to [23] and [21], only the first 500 000 events of the data set
are considered. This also allows for more thorough hyperparameter optimization,
which would otherwise be limited by the available computational resources as well
as the timeframe of this thesis. Unless otherwise stated, 90 % of the data is used for
training, while the remaining 10 % is used for evaluation. No separate validation set
is used.

Because unfolding is highly dependent on the selection of features [23] and training is
negatively affected by the presence of irrelevant ones [16], not all available features are
considered. Jäkel [23] has employed the mRMR (Minimum Redundancy Maximum
Relevance) algorithm [38] to select the 12 most relevant features. The algorithm
takes into account both the relevance of a feature to the target variable, measured
by their correlation, and the redundancy of a feature to other features. This way,
the minimal-optimal set of features is selected, in contrast to the all-relevant set
of features, which would also contain redundant features. A list of said features is
provided in Table 5.1. They are reused in this thesis.
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5.1 Setup

SplineMPEDirectHitsICE.n_dir_doms
VariousVariables.Cone_Angle
SplineMPECramerRaoParams.variance_theta
Borderness.Q_ratio_in_border
SplineMPETruncatedEnergy_SPICEMie_BINS_MuEres.value
SplineMPETruncatedEnergy_SPICEMie_DOMS_Neutrino.energy
SplineMPEDirectHitsICB.n_late_doms
Dustyness.n_doms_in_dust
LineFitGeoSplit1Params.n_hits
SplineMPEDirectHitsICC.dir_track_hit_distribution_smoothness
SPEFit2GeoSplit1BayesianFitParams.logl
SplineMPECharacteristicsIC.avg_dom_dist_q_tot_dom

Table 5.1: 12 best features according to the mRMR algorithm [23].

It has been shown that none of the selected features are normally distributed [23]. In
accordance with [23], the features are therefore transformed using the Yeo-Johnson
transformation [48], a power transformation which reduces skewness. Additionally,
zero-mean, unit-variance normalization is applied to all features.

As described in section 3.2, DSEA+ requires discrete energy classes. The target
variable MCPrimary.energy is therefore discretized into 10 bins (in accordance with
[21]). Contrary to [23] and [21], under- and overflow bins are added in order to allow
for the application to real data. The lower limit of the overflow bin is chosen so that it
contains a similar number of events as the previous bin, ensuring sufficient statistics.
A lower energy limit of 105 GeV (in accordance with [21]) was found to satisfy
this requirement. The underflow bin is assigned the energy range from 102 GeV to
102.1GeV because the data set does not contain any events with exceptionally low
energies below 102 GeV. This way, the event count in the underflow bin is similar to
the neighboring bin. The remaining 8 bins are spaced logarithmically between the
under- and overflow bins so that the entire energy range of the Monte Carlo data set
is covered. A histogram utilizing the aforementioned bins is shown in Figure 5.1.

5.1.2 Neural Network and DSEA+

A PyTorch [35] implementation of the CORN method as well as several examples
demonstrating its application on different data sets are provided by [43]. This work
makes use of said implementation of CORN and hence the PyTorch framework.
Additionally, PyTorch Lightning [39], TorchMetrics [33], and scikit-learn [37] are
used.
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Figure 5.1: Energy spectrum of the first 500 000 events in the Monte Carlo data
set using the discretized energy ranges as bins.

The neural network consists of 4 fully connected hidden layers. The input layer has
12 neurons, corresponding to the number of features, while the output layer has
9 neurons, corresponding to the number of binary classification subtasks, i.e. the
number of bins minus one. In total, the neural network has about 6100 trainable
parameters. The number of neurons and the activation function per layer are shown
in Table 5.2. In order to retrieve probabilities from the output neurons, a modified
version of the CORN-provided function corn_label_from_logits(logits) is used,
which implements the conversion from threshold- to per-class probabilities outlined
in subsection 4.2.2.

Adaptive Moment Estimation (Adam) [26] is used as the optimizer. It minimizes
the loss function provided by CORN (see Equation 4.4).

The neural network keeps its weights between DSEA+ iterations. In theory, this could
improve its performance, analogous to fine-tuning a pre-trained model. However,
[21] found no significant effect on the performance.

For this work, the Python implementation of DSEA+ [7] is used, which expects
a scikit-learn classifier. In order to interface with this library, a wrapper class is imple-
mented, which exposes a constructor as well as the needed methods fit(X, y, sample_weight)
and predict_proba(X).
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5.2 Performance Metrics

neurons activation function

12 –
120 leaky ReLU
240 leaky ReLU
120 leaky ReLU
12 leaky ReLU
9 leaky ReLU

Table 5.2: Shape and activation functions of the neural network. The number of
neurons in the input and output layers is determined by the number of features
and bins, respectively. Each activation function precedes the neurons in the same
row.

5.2 Performance Metrics

In order to evaluate the performance of the models and to compare them to prior
works, several metrics are used. For the calculation of all metrics that are mentioned
here, scikit-learn [37] is used.

5.2.1 Accuracy

The accuracy [1] is the fraction of correctly classified events to the total number
of events. It is a common metric for classification tasks, but it is not ideal for
ordinal classification since it does not take into account the ordering of the classes.
For example, the metric is the same for a misclassification by one rank and a
misclassification by two ranks. Nonetheless, it gives an indication of the overall
performance of the model.

5.2.2 Mean Absolute Error

The mean absolute error (MAE) [47] is a metric that is commonly used for regression
tasks. It is defined as

MAE = 1
𝑁

𝑁
∑
𝑖=1

∣𝑦[𝑖] − ̂𝑦[𝑖]∣ (5.1)

where 𝑁 is the number of events, 𝑦[𝑖] is the true value of the 𝑖-th event, and ̂𝑦[𝑖] is
the predicted value of the 𝑖-th event.
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5 Unfolding with CORN

Since the absolute value of the error is considered, overestimation and underestima-
tion are treated equally and do not cancel each other out. In contrast to the root
mean squared error (RMSE), the MAE is not especially sensitive to outliers and has
a more natural interpretation [47].

5.2.3 Wasserstein Distance

The two previous metrics were based on single predictions for each event. They
disregard both the confidences of the predictions, considering only the prediction
with the highest confidence, and the spectrum, which results from summing up the
confidences over all events.

In contrast, the Wasserstein distance [40] compares the unfolded spectrum to the
true spectrum. It is also known as earth mover’s distance (EMD), hinting at the
analogy of moving earth to transform one distribution into another, where the cost
is given as the product of the distance and the amount of earth moved.

Mathematically, the Wasserstein distance (of first kind) can be defined as

WD(p, q) = inf
𝜋∈𝛱(p,q)

∫
ℝ2

|𝑥 − 𝑦| d𝜋(𝑥, 𝑦) (5.2)

where p and q are the probability distributions subject to comparison, 𝛱(p, q) is
the set of all probability distributions on ℝ2, and 𝜋 is a probability distribution on
ℝ2.

5.3 Hyperparameters

Hyperparameters are parameters that are not learned from the data, but adjusted
by the user. In order to find the optimal hyperparameters, the unfolding procedure
is repeated for different values of the hyperparameters.

A starting point is determined by Bayesian optimization of the hyperparameters
(see subsection 5.3.2). Then, individual grid searches are performed for the hyperpa-
rameters of interest. In each case, 10-fold cross-validation is utilized to reduce the
variance of single data points (see subsection 5.3.1).

The adaptive step size method of DSEA+ (see section 3.2.3) is used because it
performs well with all reasonable convergence thresholds. It eliminates the need to
optimize for step size related hyperparameters, such as exponential vs. multiplicative
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5.3 Hyperparameters

decay or the initial step size, apart from the 𝐽-factor, which only has a minor effect
on the results, and provides accurate results after a few iterations [8].

Since Adam maintains separate learning rates for each parameter, optimization for
the learning rate is not essential. This is verified by the initial Bayesian optimization
(subsection 5.3.2), where the results have no significant correlation with the learning
rate.

5.3.1 Cross-Validation

Cross-validation [6] is a method to evaluate the performance of a model on unseen
data without having to reserve a part of the data for testing. The data is split into
𝑘 folds of equal size. The model is then trained on 𝑘 − 1 folds, and evaluated on
the remaining fold. This is repeated 𝑘 times, each time using a different fold for
evaluation. The average of the results is then used as the performance metric.

In this work, cross-validation is used primarily to get more meaningful performance
metrics for each hyperparameter setting, since individual runs have a high variance.
The number of folds is set to 𝑘 = 10, striking a balance between the size of the data
set, the statistical uncertainty, and the computational cost.

5.3.2 Initial Bayesian Search

Since a grid search is computationally expensive, especially for a large number of
hyperparameters, a Bayesian optimization search [36] is used to find a good starting
point for the grid search. Contrary to a random search, the results of previous runs
are taken into account by building a probabilistic model of the objective function (in
this case, the Wasserstein distance), which allows the search to focus on promising
areas of the hyperparameter space.

Figure 5.2 shows the results of the Bayesian hyperparameter search. Based on these
results, the initial hyperparameters are set to the values shown in Table 5.3.

17
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Figure 5.2: Parallel coordinates plot of the initial Bayesian hyperparameter search.
For clarity, only the mean of each 10-fold cross-validation run is shown.

hyperparameter value

batch size 1024
convergence threshold 𝜖 10−2

clusters 𝐽 250
epochs 12
learning rate 0.0004

Table 5.3: Optimal hyperparameters as determined by a Bayesian optimization
search.
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5.3 Hyperparameters

5.3.3 Batch Size

The batch size determines the number of events used for each training step. While
larger batch sizes increase the training speed on optimized hardware, the performance
of the model can be negatively affected [24].

The box plot in Figure 5.3 shows the results of a grid search for the batch size.
A batch size of 4096 is chosen as the optimal value, not only because it has the
smallest Wasserstein distance and low variance, but also because it allows for a
faster training time compared to smaller values.
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Figure 5.3: Box plot of the performance of the model for different batch sizes.
The performance is measured using the Wasserstein distance. The box shows the
25th to 75th percentile, the center line denotes the median, and the whiskers show
the minimum and maximum, apart from outliers, which are shown as dots. A
dashed orange line indicates the best median value.

5.3.4 Convergence Threshold

The box plot in Figure 5.4 shows the results of a grid search for the convergence
threshold (as described in subsection 3.2.3). For larger values, the performance
tends to improve, until approximately 𝜖 > 0.05. This is because a high convergence
threshold can be thought of as a form of implicit regularization, analogous to early
stopping, contrary to explicit regularization, as described in section 3.1.1. Selecting
even higher values of 𝜖 (not shown in the plot) stops DSEA+ after the first iteration,
which results in particularly poor performance. 𝜖 = 0.025 is chosen as the optimal
value.
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Figure 5.4: Box plot of the Wasserstein distance for different convergence thresh-
olds. Note that the abscissa is not uniformly spaced.

5.3.5 Number of Clusters

The adaptive step size function, which has been explained in section 3.2.3, internally
relies on clustering the data into 𝐽 clusters. The number of clusters 𝐽 is therefore a
hyperparameter of the algorithm. Large values of 𝐽 have previously been shown to
lead to slightly better results [8]. Figure 5.5 confirms this, although the median does
not decrease monotonically with 𝐽. The optimal value is 200, which has a slightly
better performance than 500.

5.3.6 Number of Epochs

While a higher number of epochs typically increases the model’s performance on
the training data, it also increases the risk of overfitting. Figure 5.6 visualizes a
hyperparameter search for the number of epochs per DSEA+ iteration. The results
show that the model’s performance on the training data is best for 12 epochs.
Figure A.3 shows that the accuracy is not negatively affected by a higher number of
epochs, indicating that the model is not overfitting.
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Figure 5.5: Box plot of the Wasserstein distance for different numbers of clusters.
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Figure 5.6: Box plot of the Wasserstein distance for different epoch counts.
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5 Unfolding with CORN

5.4 Uncertainty and Results

Using the best-performing hyperparameters from the hyperparameter search, the
final model is evaluated in more detail. Specifically, the uncertainty of the predictions
is analyzed, and the physical plausibility of the predictions is investigated.

5.4.1 Bootstrapping

Bootstrapping [17] is a method to estimate the uncertainty of a model. It considers
the given data as a random sample from a larger population. Therefore, by repeatedly
sampling from the data and training a model on each sample, the model’s uncertainty
can be determined as the variance of the results of the different models. For the
present work, 50 bootstrap samples are used. Since using a bootstrap sample of the
same size as the original (“bag”) data set might produce an inconsistent bootstrap
estimator [42], 1 000 000 events are used as the original data set, while the bootstrap
samples used for training contain 500 000 events as before.

5.4.2 Energy Spectrum

Figure 5.7 shows the unfolded energy spectrum of the optimized model, as well
as the 68 % confidence intervals. In Figure A.4, the per-bin histograms of the
estimations for individual bootstrap runs are shown. While the probability density
in the bins from 102 GeV to 104 GeV is estimated with high precision, both the
relative deviation and the quantile range are large for the higher energy bins. This
may be caused by the comparably small number of events in these bins, which leads
to a large uncertainty in the estimation of the spectrum. Additionally, oscillations
are a common issue in deconvolution problems. Similar behavior has been observed
in [21]. The MAE of the predictions is 0.809 ranks, which explains the rather low
accuracy of 42.7 %. The Wasserstein distance is unexpectedly high at 0.0108.

5.4.3 Individual Events

Ordinal classification methods promise physically plausible probability distributions.
In contrast to LogisticAT (used by Jäkel [23]), unimodality of the probability
distribution is not enforced directly. Instead, only the threshold probabilities are
constrained to be monotonically increasing (see subsection 4.2.1). As can be seen in
Figure 5.8, slight deviations from unimodality do occur. Still, the indirect constraint
on the threshold probabilities might have had a positive impact.
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Figure 5.7: Energy spectrum and relative deviations of the bootstrap. The lines
show the median of each bin. The error bars indicate the 68 % confidence intervals,
ranging from the 16 % to the 84 % percentile. The greyed out areas mark the under-
and overflow bins. The training spectrum is indistinguishable from the training
spectrum and is therefore not shown.
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Figure 5.8: Confidence distributions of selected events. The dashed orange line
shows the true bin of the event. Unimodality is violated with varying severity. Two
events are misclassified, which is indicative of the low accuracy of the model.
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5.5 Bias

As explained in section 3.2, DSEA+ is intended to eliminate the bias introduced by
the energy spectrum of the Monte Carlo training data. In order to test whether the
bias is indeed eliminated, the model is evaluated on a stratified data set, where each
bin contains an equal number of events, whereas the training data is the same as
before.

The results are shown in Figure 5.9. As can be seen, The model adapts to the
unseen distribution of the test data. No significant amount of bias is observed.
In comparison to the unfolding of unmodified test data in Figure 5.7, the relative
deviations are even smaller on average. For comparison, in the work by Haefs [21],
where the training data is stratified instead of the test data, relative deviations of
more than 1500 % are observed.
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Figure 5.9: Energy spectrum and relative deviations of a bootstrap run on a
stratified test data set.
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6 Summary and Outlook

It has been shown that the combination of neural networks, ordinality and DSEA+

can be successfully applied to the problem of neutrino energy spectrum estimation
with IceCube data. This was enabled by adding support for sample weights and
confidences to CORN.

The new method is not unambiguously superior to the previous ones ([23] and
[21]). A strict comparison is not possible in the first place, as this work introduces
under-/overflow bins and makes use of adaptive step sizes. The randomly selected
confidence distributions of a common neural network using softmax [21] are of
comparable quality to those obtained in this work (see Figure 5.8), even though
ordinality is disregarded in the former case. Compared to [21], higher accuracy is
achieved (ours: 42.7 % vs. theirs: < 39 %). Both the RMSE (0.0164 vs. 0.000 269)
and the 𝜒2 distance (0.0392 vs. 0.003 123) are worse, however, because of the large
deviations in higher energy bins. In comparison to [23], similar Wasserstein distances
are achieved (0.0108 vs. 0.008 79), but using 10 instead of 12 bins. On the other
hand, our probability distributions of single events are not strictly unimodal.

There is still a multitude of ways in which DSEA+ and the application thereof
could be improved. Explicit regularization could dampen the currently observed
oscillations in higher energy bins. Other hyperparameters, such as the shape of the
neural network, are yet to be optimized. It might be possible to modify CORN
so that the per-class confidence distributions are strictly unimodal. In general,
other neural network architectures could be investigated. For example, graph neural
networks already exceed boosted decision trees in terms of both resolution and speed
[31]. Graph neural networks have the additional benefit of being less dependent
on feature engineering as they can be applied to “raw” data (which DOM was hit,
the collected charge, and the time of arrival). Finally, more data could be used for
training. Because of the shape of the spectrum, the number of events in the highest
energy bins remains relatively small compared to the complete data set. Although
this thesis has demonstrated that DSEA+ eliminates the training bias, the effect of
stratified training data on the overall performance has not been investigated.
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A Appendix

A.1 Detector Signatures of Different Neutrino Flavors

(a) Track / 𝜈𝜇 (b) Cascade / 𝜈𝑒 (c) Double bang / 𝜈𝜏

Figure A.1: Shapes of the Cherenkov light produced by neutrinos of different
flavors. The coloring of the DOMs indicates the time of interaction, with red being
the earliest and blue being the latest. [28]
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A.2 DSEA+: Complete Algorithm

A.2 DSEA+: Complete Algorithm

Algorithm 1 The DSEA+ algorithm with re-weighting of training examples and
adjustable step size [8].
Input:

Observed data set 𝒟obs = {x𝑛 ∈ 𝒳 ∶ 1 ≤ 𝑛 ≤ 𝑁}
Training data set 𝒟test = {(x𝑛, 𝑦𝑛) ∈ 𝒳 × {1, … , 𝐼} ∶ 1 ≤ 𝑛 ≤ 𝑁 ′}
𝜏 ≥ 0, regularization strength employed in the step size adaptation (default: 0)
𝜖 > 0, the minimal 𝜒2

Sym distance between subsequent iterations (default: 10−6)
Prior density f̂(0) (default: ̂f(0)

𝑖 = 1
𝐼 ∀1 ≤ 𝑗 ≤ 𝐽)

Output: Estimated target density f̂ ∈ ℝ𝐼

𝑘 ← 0
repeat

𝑘 ← 𝑘 − 1
∀1 ≤ 𝑛 ≤ 𝑁 ′ ∶ 𝑤(𝑘)

𝑛 ← f̂(𝑘−1)
𝑖(𝑛) /f𝑡

𝑖(𝑛)

Infer ℳ from 𝒟train weighted by 𝑤(𝑘)+
𝑛

∀1 ≤ 𝑖 ≤ 𝐼 ∶ 𝑝(𝑘)
𝑖 ← 1

𝑁 ∑𝑁
𝑛=1 𝑐ℳ(𝑖|x𝑛) − f̂(𝑘−1)

𝛼(𝑘)
Run ← argmin𝛼≥0 ℓ𝑟(f̂(𝑘−1) + 𝛼𝑝(𝑘))

̂f(𝑘)+
𝑖 ← f̂(𝑘−1) + 𝛼(𝑘)

Run ⋅ 𝑝(𝑘)

until 𝜒2
Sym(f̂(𝑘), f̂(𝑘−1)) ≤ 𝜖

return f̂ ← f̂(𝑘)
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A Appendix

A.3 From Threshold to Per-Class Probabilities

Given four ranks with indices 𝑞 ∈ {1, 2, 3, 4}, CORN’s output layer has three neurons,
which – after applying sigmoid and a cumulative product – yield three threshold
probabilities: ̂𝑃 (𝑞 > 1), ̂𝑃 (𝑞 > 2) and ̂𝑃 (𝑞 > 3). The goal is to calculate the
probability of each class 𝑞, i.e. ̂𝑃 (𝑞 = 1), ̂𝑃 (𝑞 = 2), ̂𝑃 (𝑞 = 3) and ̂𝑃 (𝑞 = 4).

Using 𝑞 ∈ {1, 2, 3, 4}, the following equations hold:

̂𝑃 (𝑞 = 1) = ¬ ̂𝑃 (𝑞 > 1) = 1 − ̂𝑃 (𝑞 > 1)

̂𝑃 (𝑞 = 2) = ¬ ̂𝑃 (𝑞 ≠ 2)
= ¬( ̂𝑃 (𝑞 < 2) ∨ ̂𝑃 (𝑞 > 2))
= 1 − ((1 − ̂𝑃 (𝑞 > 1)) + ̂𝑃 (𝑞 > 2))
= ̂𝑃 (𝑞 > 1) − ̂𝑃 (𝑞 > 2)

̂𝑃 (𝑞 = 3) = ¬ ̂𝑃 (𝑞 ≠ 3)
= ¬( ̂𝑃 (𝑞 < 3) ∨ ̂𝑃 (𝑞 > 3))
= 1 − ((1 − ̂𝑃 (𝑞 > 2)) + ̂𝑃 (𝑞 > 3))
= ̂𝑃 (𝑞 > 2) − ̂𝑃 (𝑞 > 3)

̂𝑃 (𝑞 = 4) = ̂𝑃 (𝑞 > 3)

The same principle can be applied to any number of classes.
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A.4 Monte Carlo Data Set
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Figure A.2: Energy spectrum of the full, untouched Monte Carlo data set using
30 bins.
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A.5 Additional Hyperparameter Plots
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Figure A.3: Box plot of the accuracy for different epoch counts.
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A.6 Bootstrap Distributions
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Figure A.4: Bootstrap distributions of each bin in Figure 5.7. The dashed orange
line shows the true value.
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A Appendix

A.7 Links etc.

Code on the chair’s GitLab
https://git.e5.physik.tu-dortmund.de/nweitkemper/Bachelor-code

Data set in the chair’s POOL file system
/net/big-tank/POOL/users/lkardum/new_mc_binning.csv (14.6 GB)
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