

Ordinale Klassifikation mit neuronalen Netzen in DSEA

Nicolai Weitkemper

14.10.2022

Inhalt

Neutrinoastronomie

Lösung des Entfaltungsproblems mit DSEA⁺ DSEA⁺

Ordinale Klassifikation CORN

Entfaltung mit CORN Konfiguration Hyperparametersuche Unsicherheit & Ergebnisse

Zusammenfassung & Ausblick

Nominale und ordinale Daten

- Nominale Daten: Kategorien
 - z. B. "Elektron", "Myon", "Tauon"
 - Keine natürliche Ordnung
- Ordinale Daten: *Rangfolge*
 - z. B. "schlecht", "mittel", "gut"
 - Natürliche Ordnung
- → Neutrinoenergien sind ordinale Daten (sogar metrisch)

Vorgängerarbeiten

- Vorteil: Konfidenzverteilungen physikalisch sinnvoll(er)
- \rightarrow siehe Jäkel¹
- DSEA⁺ mit neuronalen Netzwerken: V
 - Vorteil: Flexibel, evtl. bessere Performance
 - → siehe Haefs²
- DSEA⁺ mit neuronalen Netzwerken und ordinaler Klassifikation: Z
 - ightarrow ightarrow Thema dieser Arbeit

¹Jäkel, "Ordinal Classification in DSEA".

²Haefs, "Lösungen inverser Probleme".

Übersicht

Neutrinoastronomie

Lösung des Entfaltungsproblems mit DSEA⁺ DSEA⁺

Ordinale Klassifikation CORN

Entfaltung mit CORN Konfiguration Hyperparametersuche Unsicherheit & Ergebniss

Zusammenfassung & Ausblick

Neutrinos

- Ungeladene, schwach wechselwirkende Elementarteilchen
- Botenteilchen
 - Unbeeinflusst von Magnetfeldern
 - Durchdringen Materie (fast) unbehindert
- Quellen:
 - Urknall (CNB)
 - Supernovae
 - Aktive Galaxienkerne

Bildquelle: (Spiering, "Towards high-energy neutrino astronomy")

....

IceCube

- Neutrino-Detektor am Südpol
- Indirekte Detektion mittels
 Cherenkov-Licht von Reaktionsprodukten

Ziele:

- Richtung / Quelle
- Flavor
- Energie
- **...**
- Energiebereich: GeV bis PeV^a

^oAartsen u. a., "The IceCube Neutrino Observatory: instrumentation and online systems".

Bildquelle: (IceCube Collaboration, IceCube)

Übersicht

Neutrinoastronomie

Lösung des Entfaltungsproblems mit DSEA⁺ DSEA⁺

Ordinale Klassifikation CORN

Entfaltung mit CORN Konfiguration Hyperparametersuche Unsicherheit & Ergebniss

Zusammenfassung & Ausblick

Entfaltungsproblem I

Unsere Messungen sind indirekt

 \rightarrow Für eine physikalische Wahrheit f(x) können wir nur Messungen g(y) durchführen

-

■ Fredholmsche Integralgleichung¹:

$$\int_a^b A(x,y)f(x)\,\mathrm{d}x = g(y)$$

Diskretisiert:

$$\mathbf{A}\vec{f}$$
 = \vec{g}

Naive Lösung: Invertieren der Matrix **A**:

$$\vec{f} = \mathbf{A}^{-1}\vec{g}$$

Lösung des Entfaltungsproblems mit DSEA⁺

Entfaltungsproblem II

- Problem: A ist meist schlecht konditioniert
 - ightarrow Numerisch instabil
 - ightarrow Oszillationen
- Verschiedene verbesserte Ansätze:
 - Time-dependent Regularized Unfolding for Economics and Engineerings (TRUEE) / Regularized Unfolding (RUN)¹
 - Iterative Bayesian Unfolding (IBU)²
 - DSEA⁺

¹Fredholm, "Sur une classe d'équations fonctionnelles".

¹Milke u. a., "Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics".

²D'Agostini, "A multidimensional unfolding method based on Bayes' theorem"; D'Agostini, "Improved iterative Bayesian unfolding".

DSEA⁺ – Idee

- DSEA⁺ = Dortmund Spectrum Estimation Algorithm¹
- Fasse das Entfaltungsproblem als Klassifikationsproblem auf
 - Diskretisiere die Zielvariable in Bins
 - Trainiere einen Klassifizierer darauf, zu einer gegebenen Messung den Energie-Bin zu finden
 - Prinzipiell eignet sich jeder Klassifizierer (z. B. Random Forests², NN'e, ...)
- Summiere die Konfidenzen auf, um das gesamte Energiespektrum zu erhalten
 → Besser als nur die jeweils wahrscheinlichsten Bin-Zuordnungen aufzusummieren
- Aktualisiere die Gewichte jedes Bins iterativ abhängig vom rekonstruierten Spektrum
- Ziel: Konvergenz & Unabhängigkeit vom Spektrum der Monte-Carlo-Trainingsdaten

¹Bunse u. a., "Unification of Deconvolution Algorithms for Cherenkov Astronomy".

 $^{^2}$ Hymon und Ruhe, "Seasonal Variations of the Unfolded Atmospheric Neutrino Spectrum with IceCube".

DSEA⁺ – Algorithmus

- Initialisierung
 - Nehme einen gleichverteilten Prior an: $\hat{\mathbf{f}}_{i}^{(0)} = \frac{1}{i} \quad \forall i$
 - Gewichtung s. u.
- Iteration
 - Training (gewichtet gemäß w_i^(k))
 - Rekonstruiere das Test-Spektrum als Summe von Konfidenzen
 - Optionale Zwischenschritte (gekürzt):
 - (Adaptive) Schrittweite α
 - Regularisierung

• Umgewichtung:
$$W_i^{(k+1)} = \frac{\hat{f}_i^{(k)}}{f_i^{\text{train}}}$$

- Abbruch / Konvergenz:
 - Nach *K* Iterationen
 - Bei Unterschreiten einer χ^2 -Distanz zur vorherigen Schätzung

Lösung des Entfaltungsproblems mit DSEA⁺

Übersicht

Neutrinoastronomie

Lösung des Entfaltungsproblems mit DSEA⁺ DSEA⁺

Ordinale Klassifikation CORN

Entfaltung mit CORN Konfiguration Hyperparametersuche Unsicherheit & Ergebnisse

Zusammenfassung & Ausblick

CORN – Funktionsweise

- CORN = Conditional Ordinal Regression for Neural Networks
- Unterteile die Aufgabe, den Rang-Index $q \in \{1, 2, 3, 4\}$ vorherzusagen, in binäre Teilaufgaben: P[q > 1], P[q > 2|q > 1], P[q > 3|q > 2]

```
Berechne die unbedingten Wahrscheinlichkeiten:

\hat{P}[q > 2] = \hat{P}[q > 2|q > 1] \cdot \hat{P}[q > 1],

\hat{P}[q > 3] = \hat{P}[q > 3|q > 2] \cdot (\hat{P}[q > 2|q > 1] \cdot \hat{P}[q > 1]) usw.

= Erzwingt \hat{P}[q > 1] \ge \hat{P}[q > 2] \ge \hat{P}[q > 3] \ge \cdots

Vorhersage: \hat{q} = 1 + \sum_{k} \mathbb{1} \left\{ \hat{P}[q > k] > 0.5 \right\}
```


CORN – Ermittlung von Konfidenzen

- Bisher liefert CORN P[q > 1], P[q > 2] usw. und daraus eine Rang-Vorhersage \hat{q} .
- Aber wir benötigen *P*[*q* = 1], *P*[*q* = 2] usw.
- Unter der Annahme, dass es keine Energien außerhalb der gegebenen Bins gibt, gilt z. B. für q ∈ {1, 2, 3, 4}:

Ordinale Klassifikation

Übersicht

Neutrinoastronomie

Lösung des Entfaltungsproblems mit DSEA⁺ DSEA⁺

Ordinale Klassifikation CORN

Entfaltung mit CORN Konfiguration Hyperparametersuche Unsicherheit & Ergebnisse

Zusammenfassung & Ausblick

Datensatz

- Datensatz 11374¹
 - Monte-Carlo-Simulation
 - Nur "upgoing" ν_μ
 - E⁻²-Spektrum
 - 13 Mio. Ereignisse
 - \rightarrow 500 000 davon verwendet (vgl. Haefs²)
 - 94 Features verfügbar
- Zielvariable: MCPrimary.energy
- 12 Features ³
 - Selektion mit MRMR (Maximum Relevance Minimum Redundancy)
 - Yeo-Johnson-Transformation (reduziert Schiefe) und Skalierung auf Standardabweichung
- ¹IceCube Collaboration, *Dataset* 11374.
- ²Haefs, "Lösungen inverser Probleme".

³übernommen aus Jäkel (Jäkel, "Ordinal Classification in DSEA")

Bins

10 Bins

- Under-/Overflow-Bins
 - Untere Grenze: **10**^{2.1}GeV
 - Obere Grenze: 10⁵GeV (vgl. Haefs^a)

^aHaefs, "Lösungen inverser Probleme".

Neuronales Netzwerk

- Form der Hidden Layers: **120, 240, 120, 12** fully connected (vgl. Haefs¹)
- Aktivierungsfunktion: leaky ReLU
- Output-Layer: von CORN bereitgestellt
 - Ergänzt um die Berechnung von Konfidenzen (statt des wahrscheinlichsten Ranges)
- Verlustfunktion: von CORN bereitgestellt
 - Ergänzt um eine Gewichtung der Beispiele
- Optimierer: Adaptive Moment Estimation (Adam)

¹Haefs, "Lösungen inverser Probleme".

Weitere Hyperparameter

- Maximal K = 20 DSEA⁺-Iterationen → nie erreicht
- Verwende adaptive Schrittweite¹

¹aus dem Python-Paket CherenkovDeconvolution (Bunse, CherenkovDeconvolution.py)

Übersicht

Neutrinoastronomie

Lösung des Entfaltungsproblems mit DSEA⁺ DSEA⁺

Ordinale Klassifikation CORN

Entfaltung mit CORN

Konfiguration Hyperparametersuche

Zusammenfassung & Ausblick

Bayesische Optimierung

Entfaltung mit CORN

Übersicht

Neutrinoastronomie

Lösung des Entfaltungsproblems mit DSEA⁺ DSEA⁺

Ordinale Klassifikation CORN

Entfaltung mit CORN

Konfiguration Hyperparametersuche Unsicherheit & Ergebnisse

Zusammenfassung & Ausblick

Konfidenzen für einzelne Ereignisse

Entfaltung mit CORN

Spektrum

Entfaltung mit CORN

Spektrum – Vergleich mit Haefs¹

¹Haefs, "Lösungen inverser Probleme".

Bias

- Ein Klassifizierer könnte direkt das Trainings-Spektrum als Konfidenzen ausgeben
 → Perfekte Ergebnisse, aber nichts gelernt
 → Bias
- DSEA⁺ soll den Bias durch (Um-)Gewichtung minimieren
- Ansatz zur Überprüfung:
 - Training auf *E*⁻²-Spektrum (wie bisher)
 - Test auf einem gleichverteilten Spektrum

tu technische universität dortmund

Bias

Entfaltung mit CORN

Bias – Vergleich mit Haefs¹

¹Haefs, "Lösungen inverser Probleme".

Übersicht

Neutrinoastronomie

Lösung des Entfaltungsproblems mit DSEA⁺ DSEA⁺

Ordinale Klassifikation CORN

Entfaltung mit CORN Konfiguration Hyperparametersuche Unsicherheit & Ergebniss

Zusammenfassung & Ausblick

Zusammenfassung

- Physikalisch sinnvolle Konfidenzverteilungen (mit Einschränkungen)
- Oszillationen in den höheren Energiebereichen
- CORN verbessert Bias drastisch (ggü. normalem NN)

Ausblick

- (Explizite) Regularisierung
- Mehr (/gleichverteilte) Trainingsdaten
- Prüfung weiterer Hyperparameter, z. B. der Form des neuronalen Netzes
 → CORN schränkt nur die Form des Output-Layers ein
- Adaptiere DSEA⁺ für metrische Daten / Regression
- Verwende Graph Neural Networks (GNNs) auf "rohen" Daten (Zeit, Ort, Ladung)
 → Schlägt Boosted Decision Trees (BDTs) in Auflösung und Geschwindigkeit¹

¹Minh, "Reconstruction of Neutrino Events in IceCube using Graph Neural Networks".

Ende des Vortrags

IceCube – Detektorsignaturen

DSEA⁺ – Vorteile

- Beliebige Anzahl an Input-Variablen möglich
- Information über einzelne Ereignisse (/ Beiträge zum Spektrum) bleibt vollständig erhalten
 → Rekonstruktion von z. B. zeitabhängigen Spektren¹

¹Bunse, "DSEA Rock-Solid".

¹Quelle: Folien zu SMD-B

DSEA⁺ – Voraussetzungen

Diskretisierte Energien (Bins)

- Der Klassifizierer muss Konfidenzen für jede Klasse zurückgeben
- Die Referenz-Implementierung¹ geht von einem **sklearn**-Klassifizierer aus

¹Bunse, CherenkovDeconvolution.py.

CORN – Ermittlung von Konfidenzen – "Beweis" I

- Es gebe 3 Energie-Klassen/Bins, genannt 1, 2, 3
- CORN's Output-Layer gibt uns (nach Anwendung von **sigmoid** und einem kumulativen Produkt) zwei Wahrscheinlichkeiten:
 - *P*[*y* > 1]
 - P[y > 2]
- Gesucht: *P*[*y* = 1], *P*[*y* = 2], *P*[*y* = 3]

CORN – Ermittlung von Konfidenzen – "Beweis" II

■ Dann gilt $P[y = 1] \iff \neg P[y > 1] = 1 - P[y > 1]$

$$P[y = 2] \iff \neg P[y \neq 2] \iff \neg (P[y < 2] \lor P[y > 2]) \iff \neg (P[y = 1] \lor P[y = 3])$$
$$= 1 - ((1 - P[y > 1]) + P[y = 3])$$
$$= P[y > 1] - P[y > 2]$$

P[y = 3] ↔ P[y > 2]
 Fertig!

Liste von Features

- MCPrimary.energy
- SplineMPEDirectHitsICE.n_dir_doms
- VariousVariables.Cone_Angle
- SplineMPECramerRaoParams.variance_theta
- Borderness.Q_ratio_in_border
- SplineMPETruncatedEnergy_SPICEMie_BINS_MuEres.value
- SplineMPETruncatedEnergy_SPICEMie_DOMS_Neutrino.energy
- SplineMPEDirectHitsICB.n_late_doms
- Dustyness.n_doms_in_dust
- LineFitGeoSplit1Params.n_hits
- SplineMPEDirectHitsICC.dir_track_hit_distribution_smoothness
- SPEFit2GeoSplit1BayesianFitParams.logl
- SplineMPECharacteristicsIC.avg_dom_dist_q_tot_dom

Hyperparametersuche – batch size

technische universität dortmund

Hyperparametersuche – Konvergenzschwelle ϵ

Hyperparametersuche – Epochenzahl

Bootstrapping

- Ziel: Schätze Unsicherheit der Entfaltung ab
- Vorgehen (iteriert):
 - Ziehe (mit Zurücklegen) Beispiele aus dem ursprünglichen Datensatz
 - Trainiere damit das Modell
 - Evaluiere jeweils auf den Beispiele, die nicht gezogen wurden
- Bestimme Median/Quantile

Vergleiche

■ Jäkel¹:

- 12 Bins
- Ohne Under-/Overflow-Bins
- Ohne adaptive Schrittweite
- Ahnliche Wasserstein-Distanz (0.0108 vs. 0.008 79)
- Keine strikte Unimodalität der Konfidenzverteilungen

Haefs²:

- 🛚 🥂 Ohne Under-/Overflow-Bins
- Ohne adaptive Schrittweite
- Bias-Test anders herum
- Bootstrapping nur auf den Test-Daten
- Etwas bessere Genauigkeit (42.7 % vs. < 39 %)
- Etwas besseres Spektrum für Energien < 1 × 10⁵ GeV
 - Deutlich weniger Bias

¹Jäkel, "Ordinal Classification in DSEA".